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Opfi

Welcome to the Opfi documentation site! Opfi is a modular, rule-based framework for creating gene cluster identifica-
tion pipelines, particularly for large genomics or metagenomics datasets.

Opfi is implemented entirely in Python, and can be downloaded with conda or the from the Python Package Index. It
consists of two major modules: Gene Finder, for discovery of novel gene clusters, and Operon Analyzer, for rule-based
filtering, deduplication, visualization, and re-annotation of systems identified by Gene Finder.
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1.1 Getting Started

1.1.1 Installation

The recommended way to install Opfi is with Bioconda, which requires the conda package manager. This will install
Opfi and all of its dependencies (which you can read more about below, see Dependencies).

Currently, Bioconda supports only 64-bit Linux and Mac OS. Windows users can still install Opfi with pip (see below);
however, the complete installation procedure has not been fully tested on a Windows system.

Install with conda (Linux and Mac OS only)

First, set up conda and Bioconda following the quickstart guide. Once this is done, run:

conda install -c bioconda opfi

And that’s it! Note that this will install Opfi in the conda environment that is currently active. To create a fresh
environment with Opfi installed, do:

conda create --name opfi-env -c bioconda opfi
conda activate opfi-env

Install with pip

This method does not automatically install non-Python dependencies, so they will need to be installed separately, follow-
ing their individual installation instructions. A complete list of required software is provided below, see Dependencies.
Once this step is complete, install Opfi with pip by running:

pip install opfi
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Install from source

Finally, the latest development build may be installed directly from Github. First, non-Python Dependencies will need
to be installed in the working environment. An easy way to do this is to first install Opfi with conda using the Install
with conda (Linux and Mac OS only) method (we’ll re-install the development version of the Opfi package in the next
step). Alternatively, dependencies can be installed individually.

Once dependencies have been installed in the working environment, run the following code to download and install the
development build:

git clone https://github.com/wilkelab/Opfi.git
cd Opfi
pip install . # or pip install -e . for an editable version
pip install -r requirements # if conda was used, this can be skipped

Testing the build

Regardless of installation method, users can download and run Opfi’s suite of unit tests to confirm that the build is
working as expected. First download the tests from Github:

git clone https://github.com/wilkelab/Opfi
cd Opfi

And then run the test suite using pytest:

pytest --runslow --runmmseqs --rundiamond

This may take a minute or so to complete.

1.1.2 Dependencies

Opfi uses the following bioinformatics software packages to find and annotate genomic features:

Table 1.1: Software dependencies
Application Description
NCBI BLAST+ Protein and nucleic acid homology search tool
Diamond Alternative to BLAST+ for fast protein homology searches
MMseqs2 Alternative to BLAST+ for fast protein homology searches
PILER-CR CRISPR repeat detection
Generic Repeat Finder Transposon-associated repeat detection

The first three (BLAST+, Diamond, and MMseqs2) are popular homology search applications, that is, programs that
look for local similarities between input sequences (either protein or nucleic acid) and a target. These are used by
Opfi in gene_finder.pipeline.Pipeline for annotation of genes or non-coding regions of interest in the input
genome/contig. The user specifies which homology search tool to use during pipeline setup (see gene_finder.
pipeline.Pipeline for details). Note that the BLAST+ distribution contains multiple programs for homology
searching, three of which (blastp, blastn, and PSI-BLAST) are currently supported by Opfi.

The following table summarizes the main difference between each homology search program. It may help users de-
cide which application will best meet their needs. Note that performance tests are inherently hardware and context
dependent, so this should be taken as a loose guide, rather than a definitive comparison.
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Table 1.2: Comparison of homology search programs supported by Opfi
Applica-
tion

Relative sensitiv-
ity

Relative
speed

Requires a protein or nucleic acid sequence
database?

Diamond + ++++ protein
MMseqs2 ++ +++ protein
blastp +++ ++ protein
PSI-
BLAST

++++ + protein

blastn NA NA nucleic acid

The last two software dependencies, PILER-CR and Generic Repeat Finder (GRF), deal with annotation of repetive
sequences in DNA. PILER-CR identifies CRISPR arrays, regions of alternatating ~30 bp direct repeat and variable
sequences that play a role in prokaryotic immunity. GRF identifies repeats associated with transposable elements, such
as terminal inverted repeats (TIRs) and long terminal repeats (LTRs).

1.2 Example Usage

1.2.1 Example 1: Finding CRISPR-Cas systems in a cyanobacteria genome

In this example, we will annotate and visualize CRISPR-Cas systems in the cyanobacteria species Rippkaea orientalis.
CRISPR-Cas is a widespread bacterial defense system, found in at least 50% of all known prokaryotic species. This
system is significant in that it can be leveraged as a precision gene editing tool, an advancement that was awarded the
2020 Nobel Prize in Chemistry. The genome of R. orientalis harbors two complete CRISPR-Cas loci (one chromosomal,
and one extrachromosomal/plasmid).

You can download the complete assembled genome here; it is also available at https://github.com/wilkelab/Opfi under
tutorials, along with the other data files necessary to run these examples, and an interactive jupyter notebook version
of this tutorial.

This tutorial assumes the user has already installed Opfi and all dependencies (if installing with conda, this is done
automatically). Some familiarity with BLAST and the basic homology search algorithm may also be helpful, but is not
required.

1. Use the makeblastdb utility to convert a Cas protein database to BLAST format

We start by converting a Cas sequence database to a format that BLAST can recognize, using the command line utility
makeblastdb, which is part of the core NCBI BLAST+ distribution. A set of ~20,000 non-redundant Cas sequences,
downloaded from Uniprot is available as a tar archive tutorials/cas_database.tar.gz . We’ll make a new direc-
tory, “blastdb”, and extract sequences there:

mkdir blastdb
cd blastdb && tar -xzf cas_database.tar.gz && cd ..

Next, create two BLAST databases for the sequence data: one containing Cas1 sequences only, and another that contains
the remaining Cas sequences.

cd blastdb && cat cas1.fasta | makeblastdb -dbtype prot -title cas1 -hash_index -out␣
→˓cas1_db && cd ..
cd blastdb && cat cas[2-9].fasta cas1[0-2].fasta casphi.fasta | makeblastdb -dbtype prot␣
→˓-title cas_all -hash_index -out cas_all_but_1_db && cd ..

1.2. Example Usage 5
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-dbtype prot simply tells makeblastdb to expect amino acid sequences. We use -title and -out to name the
database (required by BLAST) and to prefix the database files, respectively. -hash_index directs makeblastdb to
generate a hash index of protein sequences, which can speed up computation time.

2. Use Gene Finder to search for CRISPR-Cas loci

CRISPR-Cas systems are extremely diverse. The most recent classification effort identifies 6 major types, and over
40 subtypes, of compositionally destinct systems. Although there is sufficent sequence similarity between subtypes to
infer the existence of a common ancestor, the only protein family present in the majority of CRISPR-cas subtypes is
the conserved endonuclease Cas1. For our search, we will define candidate CRISPR-cas loci as having, minimally, a
cas1 gene.

First, create another directory for output:

mkdir example_1_output

The following bit of code uses Opfi’s gene_finder.pipeline module to search for CRISPR-Cas systems:

from gene_finder.pipeline import Pipeline
import os

genomic_data = "GCF_000024045.1_ASM2404v1_genomic.fna.gz"
output_directory = "example_1_output"

p = Pipeline()
p.add_seed_step(db="blastdb/cas1_db", name="cas1", e_val=0.001, blast_type="PROT", num_
→˓threads=1)
p.add_filter_step(db="blastdb/cas_all_but_1_db", name="cas_all", e_val=0.001, blast_type=
→˓"PROT", num_threads=1)
p.add_crispr_step()

# use the input filename as the job id
# results will be written to the file <job id>_results.csv
job_id = os.path.basename(genomic_data)
results = p.run(job_id=job_id, data=genomic_data, output_directory=output_directory, min_
→˓prot_len=90, span=10000, gzip=True)

First, we initialize a gene_finder.pipeline.Pipeline object, which keeps track of all search parameters, as well
as a running list of systems that meet search criteria. Next, we add three search steps to the pipeline:

1. gene_finder.pipeline.Pipeline.add_seed_step() : BLAST is used to search the input genome against
a database of Cas1 sequences. Regions around putative Cas1 hits become the intial candidates, and the rest of
the genome is ignored.

2. gene_finder.pipeline.Pipeline.add_filter_step() : Candidate regions are searched for any addi-
tional Cas genes. Candidates without at least one additional putative Cas gene are also discarded.

3. gene_finder.pipeline.Pipeline.add_crispr_step() : Remaining candidates are annotated for
CRISPR repeat sequences using PILER-CR.

Finally, we run the pipeline, executing steps in the order they we added. min_prot_len sets the minimum length (in
amino acid residues) of hits to keep (really short hits are unlikely real protein encoding genes). span is the region
directly up- and downstream of initial hits. So, each candidate system will be about 20 kbp in length. Results are
written to a single CSV file. Final candidate loci contain at least one putative Cas1 gene and one additional Cas gene.
As we will see, this relatively permissive criteria captures some non-CRISPR-Cas loci. Opfi has additional modules
for reducing unlikely systems after the gene finding stage.

6 Chapter 1. Contents
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3. Visualize annotated CRISPR-Cas gene clusters with Operon Analyzer

It is sometimes useful to visualize candidate systems, especially during the exploratory phase of a genomics survey.
Opfi provides a few functions for visualizing candidate systems in operon_analyzer.visualize. We’ll use these to
visualize the CRISPR-Cas gene clusters in R. orientalis:

import csv
import sys
from operon_analyzer import load, visualize

feature_colors = { "cas1": "lightblue",
"cas2": "seagreen",
"cas3": "gold",
"cas4": "springgreen",
"cas5": "darkred",
"cas6": "thistle",
"cas7": "coral",
"cas8": "red",
"cas9": "palegreen",
"cas10": "yellow",
"cas11": "tan",
"cas12": "orange",
"cas13": "saddlebrown",
"casphi": "olive",
"CRISPR array": "purple"
}

# read in the output from Gene Finder and create a gene diagram for each cluster (operon)
with open("example_1_output/GCF_000024045.1_ASM2404v1_genomic.fna.gz_results.csv", "r")␣
→˓as operon_data:

operons = load.load_operons(operon_data)
visualize.plot_operons(operons=operons, output_directory="example_1_output", feature_

→˓colors=feature_colors, nucl_per_line=25000)

Running this script produces the following three gene diagrams, one for each system in the input CSV:

Fig. 1.1: A CRISPR-Cas system in the chromosome of R. orientalis.

We can see that both CRISPR-Cas systems were identified (Fig. 1.1 and Fig. 1.2). We also see some systems that
don’t resemble functional CRISPR-Cas operons (Fig. 1.3). Because we used a relatively permissive e-value threshhold

1.2. Example Usage 7
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Fig. 1.2: A second CRISPR-Cas system in R. orientalis plasmid 1.

Fig. 1.3: An R. orientalis locus with a putative CRISPR-Cas gene.

of 0.001 when running BLAST, Opfi retained regions with very low sequence similarity to true CRISPR-Cas genes.
In fact, these regions are likely not CRISPR-Cas loci at all. Using a lower e-value would likely eliminate these “false
positive” systems, but operon_analyzer.rules exposes functions for filtering out unlikely candidates after the intial
BLAST search.

In general, we have found that using permissive BLAST parameters intially, and then filtering or eliminating candidates
during the downstream analysis, is an effective way to search for gene clusters in large amounts of genomic/metagenomic
data. In this toy example, we could re-run BLAST many times without significant cost. But on a more realistic dataset,
needing to re-do the computationally expensive homology search could detrail a project. Since the optimal search
parameters may not be known a priori, it can be better to do a permissive homology search initially, and then narrow
down results later.

Finally, clean up the temporary directories, if desired:

rm -r example_1_output blastdb

1.2.2 Example 2: Filter and classify CRISPR-Cas systems based on genomic com-
position

As discussed in the previous example, known CRISPR-Cas systems fall into 6 broad categories, based on the presence
of particular “signature” genes, as well as overall composition and genomic architecture. In this example, we will use
Opfi to search for and classify CRISPR-Cas systems in ~300 strains of fusobacteria.

This dataset was chosen because it is more representative (in magnitude) of what would be encountered in a real
genomics study. Additionally, the fusobacteria phylum contains a variety of CRISPR-Cas subtypes. Given that the
homology search portion of the analysis takes several hours (using a single core) to complete, we have pre-run Gene
Finder using the same setup as the previous example.
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1. Make another temporary directory for output:

mkdir example_2_output

2. Filter Gene Finder output and extract high-confidence CRISPR-Cas systems

The following code reads in unfiltered output from gene_finder.pipeline.Pipeline and applies a set of conditions
(“rules”) to accomplish two things: 1. Select (and bin) systems according to type, and, 2. Eliminate candidates that
likely do not represent true CRISPR-Cas systems

To do this, we’ll leverage the operon_analyzer.rules and operon_analyzer.analyze modules.

from operon_analyzer import analyze, rules

fs = rules.FilterSet().pick_overlapping_features_by_bit_score(0.9)
cas_types = ["I", "II", "III", "V"]

rulesets = []
# type I rules
rulesets.append(rules.RuleSet().contains_group(feature_names = ["cas5", "cas7"], max_gap_
→˓distance_bp = 1000, require_same_orientation = True) \

.require("cas3"))
# type II rules
rulesets.append(rules.RuleSet().contains_at_least_n_features(feature_names = ["cas1",
→˓"cas2", "cas9"], feature_count = 3) \

.minimum_size("cas9", 3000))
# type III rules
rulesets.append(rules.RuleSet().contains_group(feature_names = ["cas5", "cas7"], max_gap_
→˓distance_bp = 1000, require_same_orientation = True) \

.require("cas10"))
# type V rules
rulesets.append(rules.RuleSet().contains_at_least_n_features(feature_names = ["cas1",
→˓"cas2", "cas12"], feature_count = 3))

for rs, cas_type in zip(rulesets, cas_types):
with open("refseq_fusobacteria.csv", "r") as input_csv:

with open(f"example_2_output/refseq_fuso_filtered_type{cas_type}.csv", "w") as␣
→˓output_csv:

analyze.evaluate_rules_and_reserialize(input_csv, rs, fs, output_csv)

The rule sets are informed by an established CRISPR-Cas classification system, which you can learn more about in this
paper . The most recent system recognizes 6 major CRISPR-Cas types, but since fusobacteria doesn’t contain type IV
or VI systems that can be identified with our protein dataset, we didn’t define the corresponding rule sets.

1.2. Example Usage 9
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3. Verify results with additional visualizations

Altogther, this analysis will identify several hundred systems. We won’t look at each system individually (but you are
free to do so!). For the sake of confirming that the code ran as expected, we’ll create gene diagrams for just the type V
systems, since there are only two:

import csv
import sys
from operon_analyzer import load, visualize

feature_colors = { "cas1": "lightblue",
"cas2": "seagreen",
"cas3": "gold",
"cas4": "springgreen",
"cas5": "darkred",
"cas6": "thistle",
"cas7": "coral",
"cas8": "red",
"cas9": "palegreen",
"cas10": "yellow",
"cas11": "tan",
"cas12": "orange",
"cas13": "saddlebrown",
"casphi": "olive",
"CRISPR array": "purple"
}

# read in the output from Gene Finder and create a gene diagram for each cluster (operon)
with open("example_2_output/refseq_fuso_filtered_typeV.csv", "r") as operon_data:

operons = load.load_operons(operon_data)
visualize.plot_operons(operons=operons, output_directory="example_2_output", feature_

→˓colors=feature_colors, nucl_per_line=25000)

The plotted systems should look like this:

Fig. 1.4: A type V CRISPR-Cas system.

Finally, clean up the temporary output directory, if desired:

rm -r example_2_output
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Fig. 1.5: A second type V CRISPR-Cas system.

1.3 Inputs and Outputs

1.3.1 Building sequence databases

To search for gene clusters with Opfi, users must compile representative protein (or nucleic acid) sequences for any
genes expected in target clusters (or for any non-essential accessory genes of interest). These may be from a pre-
existing, private collection of sequences (perhaps from a previous bioinformatics analysis). Alternatively, users may
download sequences from a publically available database such as Uniprot (maintained by the European Bioinformatics
Institute ) or one of the databases provided by the National Center for Biotechnology Information.

Once target sequences have been compiled, they must be converted to an application-specific database format. Opfi
currently supports BLAST+, mmseqs2, and diamond for homology searching:

• Instructions for creating sequence databases for BLAST using makeblastdb

• Instructions for creating sequence databases for mmseqs2 using mmseqs createdb

• Diamond makedb command options

The FASTA file format

Both genomic input data and reference sequence data should be in FASTA format. This is a simple flat text repre-
sentation of biological sequence data, where individual sequences are delineated by the > greater than character. For
example:

>UniRef50_Q02ML7 CRISPR-associated endonuclease Cas1 n=1700 RepID=CAS1_PSEAB
MDDISPSELKTILHSKRANLYYLQHCRVLVNGGRVEYVTDEGRHSHYWNIPIANTTSLLL
GTGTSITQAAMRELARAGVLVGFCGGGGTPLFSANEVDVEVSWLTPQSEYRPTEYLQRWV
GFWFDEEKRLVAARHFQRARLERIRHSWLEDRVLRDAGFAVDATALAVAVEDSARALEQA
PNHEHLLTEEARLSKRLFKLAAQATRYGEFVRAKRGSGGDPANRFLDHGNYLAYGLAATA
TWVLGIPHGLAVLHGKTRRGGLVFDVADLIKDSLILPQAFLSAMRGDEEQDFRQACLDNL
SRAQALDFMIDTLKDVAQRSTVSA

(continues on next page)
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(continued from previous page)

>UniRef50_Q2RY21 CRISPR-associated endonuclease Cas1 1 n=1034 RepID=CAS1A_RHORT
MADPAFVPLRPIAIKDRSSIVFLQRGQLDVVDGAFVLIDQEGVRVQIPVGGLACLMLEPG
TRITHAAIVLCARVGCLVIWVGERGTRLYAAGQPGGARADRLLFQARNALDETARLNVVR
EMYRRRFDDDPPARRSVDQLRGMEGVRVREIYRLLAKKYAVDWNARRYDHNDWDGADIPN
RCLSAATACLYGLCEAAILAAGYAPAIGFLHRGKPQSFVYDVADLYKVETVVPTAFSIAA
KIAAGKGDDSPPERQVRIACRDQFRKSGLLEKIIPDIEEILRAGGLEPPLDAPEAVDPVI
PPEEPSGDDGHRG

The sequence definition (defline) comes directly after the > character, and should be on a separate line from the sequence
(which can be on one or more subsequent lines). There is no specific defline format, however, Opfi requires that, for
both genomic input and sequence data, each definition line contain a unique sequence identifer. This should be a
single word/token immediately following the > character (i.e. spaces between the > character and the identifier are not
allowed). Any additional text on the defline is parsed as a single string, and appears in the output CSV (see Opfi output
format).

Tip: Biological sequences downloaded from most public databases will have an accession number/identifier by default.

Annotating sequence databases

To take full advantage of the rule-based filtering methods in operon_analyzer.rules, users are encouraged to anno-
tate reference sequences with a name/label that is easily searched. Labels can be as broad or as specific as is necessary
to provide meaningful annotation of target gene clusters.

Gene labels are parsed from sequence deflines; specifically, Opfi looks for the second word/token following the >
character. For example, the following FASTA sequence has been annotated with the label “cas1”:

>UniRef50_Q02ML7 cas1 CRISPR-associated endonuclease Cas1 n=1700 RepID=CAS1_PSEAB
MDDISPSELKTILHSKRANLYYLQHCRVLVNGGRVEYVTDEGRHSHYWNIPIANTTSLLL
GTGTSITQAAMRELARAGVLVGFCGGGGTPLFSANEVDVEVSWLTPQSEYRPTEYLQRWV
GFWFDEEKRLVAARHFQRARLERIRHSWLEDRVLRDAGFAVDATALAVAVEDSARALEQA
PNHEHLLTEEARLSKRLFKLAAQATRYGEFVRAKRGSGGDPANRFLDHGNYLAYGLAATA
TWVLGIPHGLAVLHGKTRRGGLVFDVADLIKDSLILPQAFLSAMRGDEEQDFRQACLDNL
SRAQALDFMIDTLKDVAQRSTVSA

After running gene_finder.pipeline.Pipeline, users could select candidates with hits against this sequence using
the following rule set:

from operon_analyzer.rules import RuleSet

rs = RuleSet.require("cas1")

In practice, a genomics search might use a reference database of hundreds (or even thousands) of representative protein
sequences, in which case labeling each sequence individually would be tedious. It is recommended to organize se-
quences into groups of related proteins that can be given a single label. This script uses the Python package Biopython
to annotate sequences in a multi-sequence FASTA file:

from Bio import SeqIO
import os, sys

def annotate_reference(prot_ref_file, label):
records = list(SeqIO.parse(ref_fasta, "fasta"))

(continues on next page)
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(continued from previous page)

for record in records:
des = record.description.split()
prot_id = des.pop(0)
des_with_label = "{} {} {}".format(prot_id, label, " ".join(des))
record.description = des_with_label

SeqIO.write(records, ref_fasta, "fasta")

if __name__ == "__main__":
ref_fasta = sys.argv[1]
label = sys.argv[2]
annotate_reference(ref_fasta, label)

It is possible to use the entire sequence description (i.e. all text following the sequence identifier) as the gene label.
This is particularly useful when using a pre-built database like nr, which contains representative protein sequences
for many different protein families. When using sequence databases that haven’t been annotated, users should set
parse_descriptions=False for each gene_finder.pipeline.Pipeline add_step() method call.

Converting sequence files to a sequence database

Once reference sequences have been compiled (and, optionally, labeled) they must be converted to a sequence database
format that is specific to the homology search program used. Currently, Opfi supports BLAST, mmseqs2, and diamond.
Each software package is automatically installed with a companion utility program for generating sequence databases.
The following example shows what a typical call to makeblastdb, the BLAST+ database utility program, might look
like:

makeblastdb -in "my_sequences.fasta" -out my_sequences/db -dbtype prot -title "my_
→˓sequences" -hash_index

The command takes a text/FASTA file my_sequences.fasta as input, and writes the resulting database files to the
directory my_sequences. Database files are prefixed with “db”. -dbtype prot specifies that the input is amino
acid sequences. We use -title to name the database (required by BLAST). -hash_index directs makeblastdb to
generate a hash index of protein sequences, which can speed up computation time.

Tip: mmseqs2 and diamond have similar database creation commands, see Building sequence databases.

1.3.2 BLAST advanced options

BLAST+ programs have a number of tunable parameters that can, for example, be used to adjust the sensitivity of the
search algorithm. We anticipate that application defaults will be sufficient for most users; nevertheless, it is possible
to use non-default program options by passing them as keyword arguments to gene_finder.pipeline.Pipeline
add_step() methods.

For example, when using blastp on the command line, we could adjust the number of CPUs to four by passing the
argument -num_threads 4 to the program. When using Opfi, this would look like num_threads=4.

Flags (boolean arguments that generally do not precede additional data) are also possible. For example, the com-
mand line flag -use_sw_tback tells blastp to compute locally optimal Smith-Waterman alignments. The cor-
rect way to specify this behavior via the gene_finder.pipeline.Pipeline API would be to use the argument
use_sw_tback=True.

1.3. Inputs and Outputs 13
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Below is a list of options accepted by Opfi. Note that some BLAST+ options are not allowed, mainly those that modify
BLAST output.

Pro-
gram

Allowed Options

blastp
and
psiblast

dbsize word_size gapopen gapextend qcov_hsp_perc xdrop_ungap xdrop_gap xdrop_gap_final searchsp
sum_stats seg soft_masking matrix threshold culling_limit window_size num_threads comp_based_stats
gilist seqidlist negative_gilistdb_soft_mask db_hard_mask entrez_query max_hspsbest_hit_overhang
best_hit_score_edge max_target_seqsimport_search_strategy export_search_strategy num_alignments

blastp
only

task

psiblast
only

gap_trigger num_iterations out_pssm out_ascii_pssm pseudocount inclusion_ethresh

blastp
(flags)

lcase_masking ungapped use_sw_tback remote

psiblast
(flags)

lcase_masking use_sw_tback save_pssm_after_last_round save_each_pssm remote

blastnfiltering_algorithm sum_stats window_masker_db window_size template_type version parse_deflines
min_raw_gapped_score string format max_hsps taxids negative_taxids num_alignments strand
off_diagonal_range subject_besthit num_sequences no_greedy negative_taxidlist culling_limit xdrop_ungap
open_penalty DUST_options sorthits xdrop_gap_final negative_gilist subject use_index bool_value filename
seqidlist task_name sort_hits database_name lcase_masking query_loc subject_loc sort_hsps line_length
boolean db_hard_mask negative_seqidlist template_length filtering_db filtering_database penalty searchsp
ungapped type gapextend db_soft_mask dbsize qcov_hsp_perc sorthsps window_masker_taxid index_name
export_search_strategy float_value soft_masking gilist entrez_query show_gis best_hit_score_edge gapopen
subject_input_file range html word_size best_hit_overhang perc_identity input_file num_descriptions
xdrop_gap dust taxidlist max_target_seqs num_threads task remote int_value extend_penalty reward
import_search_strategy num_letters

You can read more about BLAST+ options in the BLAST+ appendices.

Note: Using advanced options with mmseqs2 and diamond is not supported at this time.

1.3.3 Opfi output format

Results from gene_finder.pipeline.Pipeline searches are written to a single CSV file. Below is an example
from the tutorial (see Example Usage):
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NC_013161.1503817..525707cas1 514110..513817lcl|514110|513817|2|-
1

-1 UniRef50_A0A179D3U41.24e-
07

UniRef50_A0A179D3U4
cas1
CRISPR-
associated
en-
dori-
bonu-
cle-
ase
Cas2
n=2
Tax=Thermosulfurimonas
dis-
mu-
tans
TaxID=999894
RepID=A0A179D3U4_9BACT

MNTL-
FYLI-
IY-
DL-
PATK-
AGNKR-
RKR-
LYEML-
CGYGNWTQFSVFECFLTAVQ-
FAN-
LQSKLENLIQPNEDSVRIYILDAGSVRKTLTYGSEKPRQVDTLIL

42.4 98 51 43.13722 29 31 0 0 60.7853 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707cas1 515084..514107lcl|515084|514107|3|-
1

-1 UniRef50_A0A1Z3HN484.00e-
177

UniRef50_A0A1Z3HN48
cas1
CRISPR-
associated
en-
donu-
cle-
ase
Cas1
n=83
Tax=Cyanobacteria
TaxID=1117
RepID=A0A1Z3HN48_9CYAN

MSI-
LYLTQP-
DAVL-
SKKQEAFH-
VALKQEDGSWKKQLI-
PAQTVE-
QIVLI-
GYP-
SIT-
GEAL-
CYALELGIPVHYLSCFGKYLGSALPGYSRNGQLRLAQYHVHDNEEQRLALVKTVVTGKIHNQYHVLYRYQQKDNPLKEHKQLVKSKTTLEQVRGVEGLAAKDYFNGFKLILDSQWNFNGRNRRPPTDPVNALLSFAYGLLRVQVTAAVHIAGLDPYIGYLHETTRGQPAMVLDLMEEFRPLIADSLVLSVISHKEIKPTDFNESLGAYLLSDSGRKTFLQAFERKLNTEFKHPVFGYQCSYRRSIELQARLFSRYLQENIPYKSLSLR

489 1260325 69.538226 99 276 0 0 84.92100 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707cas1 515707..515117lcl|515707|515117|1|-
1

-1 UniRef50_A0A2I8A5411.64e-
100

UniRef50_A0A2I8A541
cas1
CRISPR-
associated
ex-
onu-
cle-
ase
Cas4
n=83
Tax=Cyanobacteria
TaxID=1117
RepID=A0A2I8A541_9NOSO

MID-
NYLPLAYL-
NAF-
EYC-
TR-
RFY-
WEYVL-
GE-
MAN-
NEHI-
I-
IGRHLHRN-
IN-
QEGI-
IKEEDTI-
IHRQQWVWSDRLQIKGIIDAVEEKESSLVPVEYKKGRMSQHLNDHFQLCAAALCLEEKTGKIITYGEIFYHANRRRQRVDFSDRLRCSTEQAIHHAHELVNQKMPSPINNSKKCRDCSLKTMCLPKEVKQLRNSLISD

285 729 195 66.154129 66 162 0 0 83.0899 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707cas2 514110..513817lcl|514110|513817|2|-
1

-1 UniRef50_A0A1Z3HN557.36e-
46

UniRef50_A0A1Z3HN55
cas2
CRISPR-
associated
en-
dori-
bonu-
cle-
ase
Cas2
n=68
Tax=Cyanobacteria
TaxID=1117
RepID=A0A1Z3HN55_9CYAN

MNTL-
FYLI-
IY-
DL-
PATK-
AGNKR-
RKR-
LYEML-
CGYGNWTQFSVFECFLTAVQ-
FAN-
LQSKLENLIQPNEDSVRIYILDAGSVRKTLTYGSEKPRQVDTLIL

142 357 94 67.02163 31 77 0 0 81.9197 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707cas4 515084..514107lcl|515084|514107|3|-
1

-1 UniRef50_A0A1E5G3J01.01e-
72

UniRef50_A0A1E5G3J0
cas4
CRISPR-
associated
en-
donu-
cle-
ase
Cas1
n=4
Tax=Firmicutes
TaxID=1239
RepID=A0A1E5G3J0_9BACL

MSI-
LYLTQP-
DAVL-
SKKQEAFH-
VALKQEDGSWKKQLI-
PAQTVE-
QIVLI-
GYP-
SIT-
GEAL-
CYALELGIPVHYLSCFGKYLGSALPGYSRNGQLRLAQYHVHDNEEQRLALVKTVVTGKIHNQYHVLYRYQQKDNPLKEHKQLVKSKTTLEQVRGVEGLAAKDYFNGFKLILDSQWNFNGRNRRPPTDPVNALLSFAYGLLRVQVTAAVHIAGLDPYIGYLHETTRGQPAMVLDLMEEFRPLIADSLVLSVISHKEIKPTDFNESLGAYLLSDSGRKTFLQAFERKLNTEFKHPVFGYQCSYRRSIELQARLFSRYLQENIPYKSLSLR

233 595 333 39.940133 179 191 6 21 57.3698 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707cas4 515707..515117lcl|515707|515117|1|-
1

-1 UniRef50_A0A2I8A5411.92e-
99

UniRef50_A0A2I8A541
cas4
CRISPR-
associated
ex-
onu-
cle-
ase
Cas4
n=83
Tax=Cyanobacteria
TaxID=1117
RepID=A0A2I8A541_9NOSO

MID-
NYLPLAYL-
NAF-
EYC-
TR-
RFY-
WEYVL-
GE-
MAN-
NEHI-
I-
IGRHLHRN-
IN-
QEGI-
IKEEDTI-
IHRQQWVWSDRLQIKGIIDAVEEKESSLVPVEYKKGRMSQHLNDHFQLCAAALCLEEKTGKIITYGEIFYHANRRRQRVDFSDRLRCSTEQAIHHAHELVNQKMPSPINNSKKCRDCSLKTMCLPKEVKQLRNSLISD

285 729 195 66.154129 66 162 0 0 83.0899 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707cas6 516642..515833lcl|516642|515833|2|-
1

-1 UniRef50_A0A654SHL32.64e-
108

UniRef50_A0A654SHL3
cas6
CRISPR_Cas6
domain-
containing
pro-
tein
n=30
Tax=Cyanobacteria
TaxID=1117
RepID=A0A654SHL3_9CYAN

MVQDILPQLHKYQLQS-
LVIEL-
GVAKQGKL-
PATL-
SRAI-
HACVL-
NWL-
SLAD-
SQLAN-
QI-
HD-
SQISPLCLSGLIGNRRQPYSLLGDYFLLRIGVLQPSLIKPLLKGIEAQETQTLELGKFPFIIRQVYSMPQSHKLSQLTDYYSLALYSPTMTEIQLKFLSPTSFKQIQGVQPFPLPELVFNSLLRKWNHFAPQELKFPEIQWQSFVSAFELKTHALKMEGGAQIGSQGWAKYCFKDTEQARIASILSHFAFYAGVGRKTTMGMGQTQLLVNT

314 804 270 55.926151 118 195 1 1 72.22100 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707cas5 517387..516611lcl|517387|516611|1|-
1

-1 UniRef50_A0A2I8AFZ31.43e-
118

UniRef50_A0A2I8AFZ3
cas5
Type
I-
D
CRISPR-
associated
pro-
tein
Cas5/Csc1
n=62
Tax=Cyanobacteria
TaxID=1117
RepID=A0A2I8AFZ3_9NOSO

MNIYY-
C-
QLTL-
HD-
NIF-
FA-
TREMGLLYETEKYL-
H-
N-
WAL-
SYAF-
FKG-
TYIPH-
PYR-
LQGK-
SAQKPDYLDSTGEQSLAHLNRLKIYVFPAKPLRWSYQINTFKAAQTTYYGKSQQFGDKGANRNYPINYGRAKELAVGSEYHTFLISSQELNIPHWIRVGKWSAKVEVTSYLIPQKAISQHSGIYLCDHPLNPIDLPFDQELLLYNRIVMPPVSLVSQAQLQGNYCKINKNNWNDCPSNLTDLPQQICLPLGVNYGAGYIASAS

338 866 252 65.079164 71 194 3 17 76.9898 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707cas7 518600..517530lcl|518600|517530|3|-
1

-1 UniRef50_B7JVM80.0 UniRef50_B7JVM8
cas7
CRISPR-
associated
pro-
tein
Csc2
n=52
Tax=Cyanobacteria
TaxID=1117
RepID=B7JVM8_RIPO1

MSILETLKPQFQSAF-
PRLASANYVH-
FIML-
RHSQSF-
PVFQT-
DGVL-
NTVRTQAGLMAKD-
SLSRLVMFKRKQTTPERLTGRELLRSLNITTADKNDKEKGCEYNGEGSCKKCPDCIIYGFAIGDSGSERSKVYSDSTFSLSAYEQSHRTFTFNAPFEGGTMSEQGVMRSAINELDHILPEITFPNIETLRDSTYEGFIYVLGNILRTKRYGAQESRTGTMKNHLVGIAFCDGEIFSNLRFTQALYDGLEGDVNKPIDEICYQASQIVQTLLSDEPVRKIKTIFGEELNHLINEVSGIYQNDALLTETLNMLYQQTKTYSENHGSLAKSKPPKAEGNKSKGRTKKKGDDEQTSLDLNIEE

733 1891356 98.876352 4 354 0 0 99.44100 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707cas10521597..518673lcl|521597|518673|3|-
1

-1 UniRef50_B7KB380.0 UniRef50_B7KB38
cas10
CRISPR-
associated
pro-
tein
Csc3
n=52
Tax=Cyanobacteria
TaxID=1117
RepID=B7KB38_GLOC7

MTL-
LQIL-
L-
LETISQDT-
D-
PIL-
I-
SYLETVL-
PAMEPE-
FALI-
PALGGSQQI-
HYQN-
LI-
AIGN-
RYAQENAKRFSDKADQNLLVHVLNALLTAWNLVDHLTKPLSDIEKYLLCLGLTLHDYNKYCLGHGEESPKVSNINEIINICQELGKKLNFQAFWSDWEQYLPEIVYLAQNTQFKAGTNAIPANYPLFTLADSRRLDLPLRRLLAFGDIAVHLQDPADIISKTGGDRLREHLRFLGIKKALVYHRLRDTLGILSNGIHNATLRFAKDLNWQPLLFFAQGVIYLAPIDYTSPEKMELQGFIWQEISQLLASSMLKGEIGFKRDGKGLKVAPQTLELFTPVQLIRNLADVINVKVANAKVPATPKRLEKLELTDIERQLLEKGADLRADRIAELIILAQREFLADSPEFIDWTLQFWGLEKQITAEQTQEQSGGVNYGWYRVAANYIANHSTLSLEDVSGKLVDFCQQLADWATSNQLLSSHSSSTFEVFNSYLEQYLEIQGWQSSTPNFSQELSTYIMAKTQSSKQPICSLSSGEFISEDQMDSVVLFKPQQYSNKNPLGGGKIKRGISKIWALEMLLRQALWTVPSGKFEDQQPVFLYIFPAYVYSPQIAAAIRSLVNDMKRINLWDVRKHWLHEDMNLDSLRSLQWRKEEAEVGRFKDKYSRADIPFMGTVYTTTRGKTLTEAWIDPAFLTLALPILLGVKVIATSSSVPLYNSDNDFLDSVILDAPAGFWQLLKLSTSLRIQELSVALKRLLTIYTIHLDNRSNPPDARWQALNSTVREVITDVLNVFSIADEKLREDQREASPQEVQRYWKFAEIFAQGDTIMTEKLKLTKELVRQYRTFYQVKWSESSHTILLPLTKALEEILSTPEHWDDEELILQGAGILNDALDRQEVYKRPLLQDKSIPYEIRKQQELQAIHQFMTTCVKELFGQMCKGDRALLQEYRNRIKSGAESAYKLLAFEEKSNSSQQQKSSEDQ

10732775978 56.544553 399 710 12 26 72.6099 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707cas3 523760..521655lcl|523760|521655|3|-
1

-1 UniRef50_A0A168SWH50.0 UniRef50_A0A168SWH5
cas3
Type
I-
D
CRISPR-
associated
he-
li-
case
Cas3
n=2
Tax=Phormidium
TaxID=1198
RepID=A0A168SWH5_9CYAN

MKIN-
LK-
PLYSKL-
NAGVGNC-
PLGC-
QEM-
CRVQQQAPQFKAPS-
GC-
NC-
PLYQHQAESYPYLTKGDTDIIFITAPTAGGKSLLASLPSLLDPNFRMMGLYPTIELVEDQTEQQNNYHNLFGLNSEERIDKLFGVELTQRIKEFNSNRFQQLWLAIETKEVILTNPDIFHLMTHFRYRDNAYGTDELPLALAKFPDLWVFDEFHIFGAHQETAVLNSMMLIRRTQQQKKRFLFTSATVKTDFVEQLKQTGLKIKEIAGEYKSEAQQGYRQILQAVELSIINLKEEDGFSWLINNAAKIRKILKAEDKGRGLIILNSVVMVRRISQELQSLLPEIVVREISGRIDRKERSQTQQLLQEEEKPVLVVATSAVDVGVDFRIHLLITESSDSATVIQRLGRLGRHSGFSNYQAFLLLSGRTPWVINRLQEKLESKQDVTREELIEAIQYAFDPPKEYQEYRNRWGAIQVQGMFSQMMGSNAKVMQSIKERISEDLKRIYGNTLDNKAWYAMGHNCLGKAIQSELLRFRGGSTLQAAVWDEQRFYTYDLLRLLPYATVDILDRETFLKAATKAGHIEEAFPSQYLQVYLRIEQWLDKRLNLNLFCNRESDELLVGKLFLITRLKLDGHPQSDVISCLSRCNLLTFLVPVDRSRTQSHWEVSYCLHLNPLFGLYRLKDASEQAYACAFNQDALLLEALNWKLTKFYRERSLIF

671 1731720 49.028353 341 479 10 26 66.53100 data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

NC_013161.1503817..525707CRISPR
ar-
ray

512560..513624 Copies:
15,
Re-
peat:
37,
Spacer:
36

–GTTTCAATCCC———–ATTACTAGGATTCATTAAAAAGAAACdata/GCF_000024045.1_ASM2404v1_genomic.fna.gz
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The first two columns contain the input genome/contig sequence ID (sometimes called an accession number) and the
coordinates of the candidate gene cluster, respectively. Since an input file can have multiple genomic sequences, these
two fields together uniquely specify a candidate gene cluster. Each row represents a single annotated feature in the
candidate locus. Features from the same candidate are always grouped together in the CSV.

Descriptions of each output field are provided below. Alignment statistic naming conventions are from the BLAST
documentation, see BLAST+ appendices (specifically “outfmt” in table C1). This glossary of common BLAST terms
may also be useful in interpreting alignment statistic meaning.

in-
dex

field
name

data
type

description

0 Contig string ID/accession for the parent contig/genome sequence.
1 Loc_coordinatesstring Start and end position of the candidate locus (relative to the parent sequence).
2 Name string Feature name/label. This is will be identical to “Description” (index 8) if

parse_descriptions is True.
3 Coordi-

nates
string Start and end position of this feature, relative to the parent sequence.

4 ORFID string A unique ID given to this feature, primarily for internal use. Only applies to features
that are genes.

5 Strand signed
int

Specifies if the feature was found in the forward (1) or backward (-1) direction. Only
applied to features that are genes.

6 Acces-
sion

string ID/accession for the reference sequence that had the best alignment (by e-value) with
this feature’s translated sequence.

7 E_val float The e-value score for the best alignment for this feature.
8 Descrip-

tion
string A description of this putative feature, parsed from the defline of best aligned reference

sequence.
9 Sequence string The (translated) amino acid sequence for this feature.
10 Bitscore float The bitscore for the best alignment for this feature.
11 Rawscore int The raw score for the best alignment for this feature.
12 Aln_len int The length of the best scoring alignment, in base pairs.
13 Pident float The fraction of identical positions in the best alignment.
14 Nident int The number of identical positions in the best alignment.
15 Mis-

match
int The number of mismatched positions in the best alignment.

16 Positive int The number of positive-scoring matches in the best alignment.
17 Gapopen int The number of gap openings.
18 Gaps int Total number of gaps in the alignment.
19 Ppos float Percentage of positive scoring matches.
20 Qcovhsp int Query coverage per HSP. That is, the fraction of the query (this feature’s translated

amino acid sequence) that was covered in the best alignment.
21 Con-

tig_filename
string The input data (genomic sequence(s)) file path.
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1.4 API Reference

1.4.1 Gene Finder

gene_finder.pipeline

class gene_finder.pipeline.Pipeline
Coordinates protein (or nucleic acid) searches to find gene clusters of interest in genomic/metagenomic data.

add_seed_step(db, name, e_val, blast_type, sensitivity=None, parse_descriptions=True, blast_path=None,
**kwargs)

Find genomic regions that contain at least one “seed” sequence.

Parameters

• db (str) – Path to the target (seed) protein database.

• name (str) – A unique name/ID for this step in the pipeline.

• e_val (float) – Expect value to use. Only keep hits with a an equivalent or better (lower)
score.

• blast_type (str) – Specifies which search program to use. This can be either “PROT”
(blastp), “PSI” (psiblast), “mmseqs” (mmseqs2), or “diamond” (diamond).

• sensitivity (str) – Sets the sensitivity param for mmseqs and diamond (does nothing
if BLAST is the seach type).

• parse_descriptions (bool, optional) – By default, reference protein descriptions
(from fasta headers) are parsed for gene name labels; specifically, descriptions are split on
whitespace characters and the second item is used for the label. Make this false to simply
use the whole protein description for the label (i.e everything after the first whitespace in
the header). If using this option with NCBI BLAST, DO NOT use the -parse_seqids
flag when creating protein databases with makeblastdb.

• blast_path (string, optional) – Path to the blastp/mmseqs/diamond program, if not
using the system default.

• **kwargs – These can be any additional BLAST parameters, specified as key-value pairs.
Note that certain parameters are not allowed, mainly those that control output formatting.
Currently only supported for blastp/psiblast; if blast_type is set to mmseqs or diamond,
kwargs will be silently ignored.

Note: This should be the first step added to a gene_finder.pipeline.Pipeline object. Additional
gene finding steps can be added in any order.

add_seed_with_coordinates_step(db, name, e_val, blast_type, sensitivity=None,
parse_descriptions=True, start=None, end=None, contig_id=None,
blast_path=None, **kwargs)

Define a genomic region of interest with coordinates instead of a seed sequence.

An alternative to gene_finder.pipeline.Pipeline.add_seed_step(). Most useful for re-
annotating putative systems of interest, where the region coordinates are already known.

Parameters

• db (str) – Path to the target database to search against.

• name (str) – A unique name/ID for this step in the pipeline.

1.4. API Reference 17
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• e_val (float) – Expect value to use. Only keep hits with an equivalent or better (lower)
score.

• blast_type (str) – Specifies which search program to use. This can be either “PROT”
(blastp), “PSI” (psiblast), “mmseqs” (mmseqs2), or “diamond” (diamond).

• sensitivity (str) – Sets the sensitivity param for mmseqs and diamond (does nothing
if BLAST is the seach type).

• parse_descriptions (bool, optional) – By default, reference protein descriptions
(from fasta headers) are parsed for gene name labels; specifically, descriptions are split on
whitespace characters and the second item is used for the label. Make this false to simply
use the whole protein description for the label (i.e everything after the first whitespace in
the header). If using this option with NCBI BLAST, DO NOT use the -parse_seqids
flag when creating protein databases with makeblastdb.

• start (int) – Defines the beginning of the region to search, in base pairs (bp). If no start
position is given the first (zero indexed) position in the genome/contig is used.

• end (int) – Defines the end of the region to search, in base pairs (bp). If no end position
is given the last position in the contig is used.

• contig_id (string, optional) – An identifier for the contig to search. If no ID is
given, the pipeline will search every contig in the input file using the coordinates specified.
Note that the contig ID is defined as the substring between the “>” character and the first ”
” character in the contig header.

• blast_path (string, optional) – Path to the blastp/mmseqs/diamond program, if not
using the system default.

• **kwargs – These can be any additional BLAST parameters, specified as key-value pairs.
Note that certain parameters are not allowed, mainly those that control output formatting.
Currently only supported for blastp/psiblast; if blast_type is set to mmseqs or diamond,
kwargs will be silently ignored.

add_filter_step(db, name, e_val, blast_type, min_prot_count=1, sensitivity=None,
parse_descriptions=True, blast_path=None, **kwargs)

Add a step to search candidate regions for target sequences, and filter out candidates that do not have at
least min_prot_count matching sequences.

Parameters

• db (str) – Path to the target protein sequence database.

• name (str) – A unique name/ID for this step in the pipeline.

• e_val (float) – Expect value to use. Only keep hits with a an equivalent or better (lower)
score.

• blast_type (str) – Specifies which search program to use. This can be either “PROT”
(blastp), “PSI” (psiblast), “mmseqs” (mmseqs2), or “diamond” (diamond).

• min_prot_count (int, optional) – Minimum number of hits needed to keep each can-
didate.

• sensitivity (str) – Sets the sensitivity param for mmseqs and diamond (does nothing
if BLAST is the seach type).

• parse_descriptions (bool, optional) – By default, reference protein descriptions
(from fasta headers) are parsed for gene name labels; specifically, descriptions are split on
whitespace characters and the second item is used for the label. Make this false to simply
use the whole protein description for the label (i.e everything after the first whitespace in
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the header). If using this option with NCBI blast, DO NOT use the -parse_seqids flag
when creating protein databases with makeblastdb.

• blast_path (string, optional) – Path to the blastp/mmseqs/diamond program, if not
using the system default.

• **kwargs – These can be any additional BLAST parameters, specified as key-value pairs.
Note that certain parameters are not allowed, mainly those that control output formatting.
Currently only supported for blastp/psiblast; if blast_type is set to mmseqs or diamond,
kwargs will be silently ignored.

add_blast_step(db, name, e_val, blast_type, sensitivity=None, parse_descriptions=True, blast_path=None,
**kwargs)

Add a non-filtering search step to the pipeline. That is, search each candidate for target sequences without
applying any filtering logic. This is most useful for annotating candidates for non-essential or ancillary
genes.

Parameters

• db (str) – Path to the target protein sequence database.

• name (str) – A unique name/ID for this step in the pipeline.

• e_val (float) – Expect value to use. Only keep hits with a an equivalent or better (lower)
score.

• blast_type (str) – Specifies which search program to use. This can be either “PROT”
(blastp), “PSI” (psiblast), “mmseqs” (mmseqs2), or “diamond” (diamond).

• sensitivity (str) – Sets the sensitivity param for mmseqs and diamond (does nothing
if BLAST is the seach type).

• parse_descriptions (bool, optional) – By default, reference protein descriptions
(from fasta headers) are parsed for gene name labels; specifically, descriptions are split on
whitespace characters and the second item is used for the label. Make this false to simply
use the whole protein description for the label (i.e everything after the first whitespace in
the header). If using this option with NCBI BLAST, DO NOT use the -parse_seqids
flag when creating protein databases with makeblastdb.

• blast_path (string, optional) – Path to the blastp/mmseqs/diamond program, if not
using the system default.

• **kwargs – These can be any additional BLAST parameters, specified as key-value pairs.
Note that certain parameters are not allowed, mainly those that control output formatting.
Currently only supported for blastp/psiblast; if blast_type is set to mmseqs or diamond,
kwargs will be silently ignored.

add_crispr_step()
Add a step to search for CRISPR arrays using PILER-CR.

add_blastn_step(db, name, e_val, parse_descriptions=False, blastn_path='blastn', **kwargs)
Add a step to do nucleotide BLAST.

Parameters

• db (str) – Path to the target protein sequence database.

• name (str) – A unique name/ID for this step in the pipeline.

• e_val (float) – Expect value to use. Only keep hits with a an equivalent or better (lower)
score.
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• parse_descriptions (bool, optional) – By default, reference protein descriptions
(from fasta headers) are parsed for gene name labels; specifically, descriptions are split on
whitespace characters and the second item is used for the label. Make this false to simply
use the whole protein description for the label (i.e everything after the first whitespace in
the header). If using this option with NCBI BLAST, DO NOT use the -parse_seqids
flag when creating protein databases with makeblastdb.

• blast_path (string, optional) – Path to the blastn program, if not using the system
default.

• **kwargs – These can be any additional BLAST parameters, specified as key-value pairs.
Note that certain parameters are not allowed, mainly those that control output formatting.
Currently only supported for blastp/psiblast; if blast_type is set to mmseqs or diamond,
kwargs will be silently ignored.

run(data, job_id=None, output_directory=None, min_prot_len=60, span=10000, record_all_hits=False,
incremental_output=False, starting_contig=None, gzip=False)→ dict
Execute each step in the pipeline, in the order they were added.

Parameters

• data (str) – Path to the input data file. Can be a single- or multi-sequence file in fasta
format.

• job_id (str, optional) – A unique ID to prefix all output files. If no ID is given, the
string “gene_finder” will be used as the prefix. In any case, results from the pipeline are
written to the file <prefix>_results.csv.

• output_directory (str, optional) – The directory to write output data files to. If no
directory is given then the current (working) directory is used.

• min_prot_len (int, optional) – Minimum ORF length (aa). Default is 60.

• span (int, optional) – Length (nt) upsteam and downstream of each seed hit to keep.
Defines the aproximate size of the genomic neighborhoods that will be used as the search
space after the seed step.

• record_all_hits (bool, optional) – Write data about all genes found (even discarded
ones) to the file <job_id>_hits.json, grouped by contig. Note that this contains much of the
same information as is in the results CSV file; nevertheless, it may be useful for analysis
or troubleshooting a search.

• incremental_output (bool, optional) – Write results to disk after each contig is
processed. Using this option also creates a checkpoint file that gives the ID of the contig that
is currently being processed; if the job finishes successfully, this file will be automatically
cleaned up. This feature is especially useful for long-running jobs.

• starting_contig (bool, optional) – The sequence identifier of the contig where the
run should begin. In other words, skip over records in the input file until the specified
contig is reached, and then run the pipeline as normal. This is usually used in conjunction
with incremental_output.

• gzip (bool, optional) – Was this file compressed with gzip?

Returns Candidate systems, grouped by contig id and genomic location.

Return type dict
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1.4.2 Operon Analyzer

The following modules comprise the core Operon Analyzer functionality.

operon_analyzer.genes

class operon_analyzer.genes.Feature(name: str, coordinates: Tuple[int, int], orfid: str, strand:
Optional[int], accession: str, e_val: Optional[float], description: str,
sequence: str, bit_score: Optional[int] = None, raw_score:
Optional[int] = None, aln_len: Optional[int] = None, pident:
Optional[float] = None, nident: Optional[float] = None, mismatch:
Optional[float] = None, positive: Optional[float] = None, gapopen:
Optional[int] = None, gaps: Optional[int] = None, ppos:
Optional[float] = None, qcovhsp: Optional[int] = None)

Represents a gene or CRISPR repeat array. This is used internally by operon_analyzer.genes.Operon, but
appears in the auto-generated documentation for reference.

class operon_analyzer.genes.Operon(contig: str, contig_filename: str, start: int, end: int, features:
List[operon_analyzer.genes.Feature])

Provides access to features that were found in the same genomic region, which presumably comprise an actual
operon. Whether this is true in reality must be determined by the user, if that is meaningful to them.

set_sequence(sequence: Bio.Seq.Seq)
Stores the nucleotide sequence of the operon.

property feature_region_sequence: str
Returns the nucleotide sequence of the operon, excluding the regions outside of the outermost Features.

property all_genes
Iterates over all genes (i.e. not CRISPR arrays) in the operon regardless of whether it’s been ignored.

property all_features
Iterates over all features in the operon regardless of whether it’s been ignored.

property feature_names
Iterates over the name of each feature in the operon

get(feature_name: str, regex=False)→ List[operon_analyzer.genes.Feature]
Returns a list of every Feature with a given name.

get_unique(feature_name: str, regex=False)→ Optional[operon_analyzer.genes.Feature]
Returns a Feature or None if there is more than one Feature with the same name

as_str()→ str
Writes an Operon back out in the same CSV format that gene_finder produces. The text won’t be completely
identical in the case where floats have trailing decimals, or zero values in scientific format are recast as a
simple float.
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operon_analyzer.rules

class operon_analyzer.rules.SerializableFunction(name: str, function: Callable, *args, custom_repr:
Optional[str] = None)

A base class for functions that we need to be able to serialize. Do not instantiate this directly.

class operon_analyzer.rules.Rule(name: str, function: Callable, *args, custom_repr: Optional[str] = None)
Defines a requirement that elements of an operon must adhere to.

evaluate(operon: operon_analyzer.genes.Operon)→ bool
Determine if an operon adheres to this rule.

class operon_analyzer.rules.Result(operon: operon_analyzer.genes.Operon)
Records which rules an operon passed and handles serialization of the data. Also makes it easy to run follow-up
queries.

add_passing(rule: operon_analyzer.rules.Rule)
Mark this rule as being one that the operon passed.

add_failing(rule: operon_analyzer.rules.Rule)
Mark this rule as being one that the operon failed.

property is_passing: bool
Declares whether the given Operon adhered to all given Rules.

class operon_analyzer.rules.Filter(name: str, function: Callable, *args, custom_repr: Optional[str] =
None)

A function that will be run on an Operon that marks Features as being ignorable for the purposes of evaluating
RuleSets.

run(operon: operon_analyzer.genes.Operon)
Mark Features in the Operon as ignored if they don’t pass the filter. This will prevent them from being
taken into account during Rule evaluation and (by default) during visualization.

class operon_analyzer.rules.FilterSet
Stores functions that take an Operon and mark individual Features as ignored in case we think they are not actually
worth taking into account when evaluating rules. Features can be ignored for multiple reasons.

must_be_within_n_bp_of_anything(distance_bp: int)
If a feature is very far away from anything it’s probably not part of an operon.

must_be_within_n_bp_of_feature(feature_name: str, distance_bp: int, regex: bool = False)
There may be situations where two features always appear near each other in functional operons.

pick_overlapping_features_by_bit_score(minimum_overlap_threshold: float)
If two features overlap by more than minimum_overlap_threshold, the one with the lower bit score is
ignored.

custom(filt: operon_analyzer.rules.Filter)
Add a rule with a user-defined function.

evaluate(operon: operon_analyzer.genes.Operon)
Run the filters on the operon and set Features that fail to meet the requirements to be ignored.

Parameters operon – The operon_analyzer.genes.Operon object whose features will be
evaluated.

class operon_analyzer.rules.RuleSet
Creates, stores and evaluates operon_analyzer.rules.Rule s that an operon must adhere to.

exclude(feature_name: str, regex: bool = False)
Forbid the presence of a particular feature.
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require(feature_name: str, regex: bool = False)
Require the presence of a particular feature.

max_distance(feature1_name: str, feature2_name: str, distance_bp: int, closest_pair_only: bool = False,
regex: bool = False)

The two given features must be no further than distance_bp base pairs apart. If there is more than one
match, all possible pairs must meet the criteria, unless closest_pair_only is True in which case only
the closets pair is considered.

at_least_n_bp_from_anything(feature_name: str, distance_bp: int, regex=False)
Requires that a feature be at least distance_bp base pairs away from any other feature. This is mostly
useful for eliminating overlapping features.

at_most_n_bp_from_anything(feature_name: str, distance_bp: int, regex: bool = False)
A given feature must be within distance_bp base pairs of another feature. Requires exactly one matching
feature to be present. Returns False if the given feature is the only feature.

same_orientation(exceptions: Optional[List[str]] = None)
All features in the operon must have the same orientation.

contains_any_set_of_features(sets: List[List[str]])
Returns True if the operon contains features with all of the names in at least one of the lists. Useful for
determining if an operon contains all of the essential genes for a particular system, for example.

contains_exactly_one_of(feature1_name: str, feature2_name: str, regex: bool = False)
An exclusive-or of the presence of two features. That is, one of the features must be present and the other
must not.

contains_at_least_n_features(feature_names: List[str], feature_count: int, count_multiple_copies:
bool = False)

The operon must contain at least feature_count features in the list. By default, a matching feature that
appears multiple times in the operon will only be counted once; to count multiple copies of the same feature,
set count_multiple_copies to True.

contains_group(feature_names: List[str], max_gap_distance_bp: int, require_same_orientation: bool)
The operon must contain a contiguous set of features (in any order) separated by no more than
max_gap_distance_bp. Optionally, the user may require that the features must all have the same ori-
entation.

maximum_size(feature_name: str, max_bp: int, all_matching_features_must_pass: bool = False, regex: bool
= False)

The operon must contain at least one feature with feature_name with a size (in base pairs) of max_bp
or smaller. If all_matching_features_must_pass is True, every matching Feature must be at least
max_bp long.

minimum_size(feature_name: str, min_bp: int, all_matching_features_must_pass: bool = False, regex: bool
= False)

The operon must contain at least one feature with feature_name with a size (in base pairs) of min_bp or
larger. If all_matching_features_must_pass is True, every matching Feature must be at least min_bp
long.

custom(rule: operon_analyzer.rules.Rule)
Add a rule with a user-defined function.

evaluate(operon: operon_analyzer.genes.Operon)→ operon_analyzer.rules.Result
See if an operon adheres to all rules.

Parameters operon – The operon_analyzer.genes.Operon object to evaluate.
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operon_analyzer.analyze

operon_analyzer.analyze.analyze(input_lines: IO[str], ruleset: operon_analyzer.rules.RuleSet, filterset:
Optional[operon_analyzer.rules.FilterSet] = None, output: Optional[IO] =
None)

Takes a handle to the CSV generated by gene_finder.pipeline.Pipeline and a operon_analyzer.
rules.RuleSet object, and produces text that describes which operons adhered to those rules. If an operon
fails any of the rules, the exact rules will be enumerated.

operon_analyzer.analyze.evaluate_rules_and_reserialize(input_lines: IO[str], ruleset:
operon_analyzer.rules.RuleSet, filterset:
Optional[operon_analyzer.rules.FilterSet] =
None, output: Optional[IO] = None)

Takes a handle to the CSV generated by gene_finder.pipeline.Pipeline and a operon_analyzer.
rules.RuleSet object, and writes passing operons back to stdout.

operon_analyzer.analyze.load_analyzed_operons(f: IO[str])→ Iterator[Tuple[str, int, int, str]]
Loads and parses the data from the output of operon_analyzer.analyze.analyze(). This is typically used
for analyzing or visualizing candidate operons.

operon_analyzer.analyze.group_similar_operons(operons: List[operon_analyzer.genes.Operon],
load_sequences: bool = True)

Groups operons together if the nucleotide sequences bounded by their outermost features (represented by
operon_analyzer.genes.Feature objects) are identical. If load_sequences is True, the nucleotide se-
quence of each operon will be loaded from disk as it is encountered.

Returns A representative operon_analyzer.genes.Operon object for each group.

Return type list

operon_analyzer.analyze.deduplicate_operons_approximate(operons:
Iterator[operon_analyzer.genes.Operon])
→ List[operon_analyzer.genes.Operon]

Deduplicates Operons by examining the names and sequences of their features (represented by
operon_analyzer.genes.Feature objects) and the sizes of the gaps between them. This is an ap-
proximate algorithm: false positives are possible when the nucleotide sequence varies between the Features
(without changing the total number of base pairs) or if there are silent mutations in the Feature CDS. However,
it is much faster than the exact method.

Returns A representative operon_analyzer.genes.Operon object for each group.

Return type list

operon_analyzer.analyze.dedup_supersets(operons: List[operon_analyzer.genes.Operon])→
List[operon_analyzer.genes.Operon]

If the same inputs are searched with gene_finder.pipeline.Pipeline using an expanded database, the new
results will be either exactly identical to the previous results, or will be supersets of the old results.

This function takes all operons, and removes ones with identical accession IDs and contig coordinates, where
the smaller operon’s features are all contained in the larger one.

Returns The non-redundant operon_analyzer.genes.Operon objects.

Return type list

operon_analyzer.analyze.cluster_operons_by_feature_order(operons:
Iterator[operon_analyzer.genes.Operon])

Organizes all operons into a dictionary based on the order/identity of their features (represented by
operon_analyzer.genes.Feature objects). Cases where the overall order is inverted are considered to be

24 Chapter 1. Contents



Opfi

the same. The keys of the dictionary are the dash-delimited feature names, with one of the two orientations (if
both exist) arbitrarily chosen. If there are ignored features, they will not appear in the key.

Returns The resulting operon_analyzer.genes.Operon clusters.

Return type dict

operon_analyzer.visualize

operon_analyzer.visualize.plot_operons(operons: List[operon_analyzer.genes.Operon], output_directory:
str, plot_ignored: bool = True, color_by_blast_statistic:
Optional[str] = None, feature_colors: Optional[dict] = {},
nucl_per_line: Optional[int] = None, show_accession: bool =
False, show_description: bool = False)

Takes operon_analyzer.genes.Operon objects and saves plots of them to disk.

Parameters

• operons (list) – Operons to be plotted.

• output_directory (str) – Path to the directory to save operon plots to.

• plot_ignored (bool, optional) – Toggles plotting of features that were marked as ig-
norable by operon_analyzer.rules.FilterSet .

• color_by_blast_statistic (str, optional) – Map an alignment quality statistic us-
ing the virdis color scale. For a list of alignment statistics captured by Opfi, see Opfi output
format .

• feature_colors (dict, optional) – If a labeled database was used during candidate
identification, features can be colored accordingly using “label”: “feature-color” pairs. For
more information about labeling sequence databases, see Annotating sequence databases .

• nucl_per_line (int, optional) – Length (in base pairs) to wrap gene diagrams on.

• show_accession (bool, optional) – Show the accession number of the best hit for each
plotted feature.

• show_description (bool, optional) – Show the description of the best hit for each
plotted feature.

operon_analyzer.visualize.plot_operon_pairs(operons: List[operon_analyzer.genes.Operon],
other_operons: List[operon_analyzer.genes.Operon],
output_directory: str, color_by_blast_statistic:
Optional[str] = None, plot_ignored: bool = False,
feature_colors: Optional[dict] = {})

Takes two lists of presumably related Operons, pairs them up such that the pairs overlap the same genomic region,
and plots one on top of the other. This allows side-by-side comparison of two different pipeline runs, so that you
can, for example, run your regular pipeline, then re-BLAST with a more general protein database like nr, and
easily see how the annotations differ.

Parameters

• operons (list) – Operons to be plotted.

• other_operons (list) – Related operons to be plotted for comparison.

• output_directory (str) – Path to the directory to save operon plots to.

• plot_ignored (bool, optional) – Toggles plotting of features that were marked as ig-
norable by operon_analyzer.rules.FilterSet .
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• color_by_blast_statistic (str, optional) – Map an alignment quality statistic us-
ing the virdis color scale. For a list of alignment statistics captured by Opfi, see Opfi output
format .

• feature_colors (dict, optional) – If a labeled database was used during candidate
identification, features can be colored accordingly using “label”: “feature-color” pairs. For
more information about labeling sequence databases, see Annotating sequence databases .

operon_analyzer.visualize.make_clustered_stacked_operon_plots(operons: Iter-
able[operon_analyzer.genes.Operon],
other_operons: Iter-
able[operon_analyzer.genes.Operon],
image_directory: str, min_count:
int = 10, plot_ignored: bool =
False, color_by_blast_statistic:
Optional[str] = None,
feature_colors: Optional[dict] =
None)

Clusters operons and plots them on top of a reannotated version of the same operon. This allows the user to
BLAST some set of data with a curated database, then re-BLAST it against a more general database, and compare
the two directly in a cluster-specific manner.

If a operon_analyzer.rules.FilterSet was used during analysis, that same set should be evaluated on each
operon before passing it into this function.

Parameters

• operons (iterable) – The operons of interest.

• other_operons (iterable) – Reannotated operons.

• image_directory (str) – The directory where all subdirectories will be created. Will be
created if it does not exist.

• min_count (int, optional) – Groups must have at least this many systems in order to be
plotted. Default is 10.

• plot_ignored (bool, optional) – Toggles plotting of features that were marked as ig-
norable by operon_analyzer.rules.FilterSet .

• color_by_blast_statistic (str, optional) – Map an alignment quality statistic us-
ing the virdis color scale. For a list of alignment statistics captured by Opfi, see Opfi output
format .

• feature_colors (dict, optional) – If a labeled database was used during candidate
identification, features can be colored accordingly using “label”: “feature-color” pairs. For
more information about labeling sequence databases, see Annotating sequence databases .

• nucl_per_line (int, optional) – Length (in base pairs) to wrap gene diagrams on.

operon_analyzer.visualize.make_clustered_operon_plots(analysis_csv: str, operons:
Iterable[operon_analyzer.genes.Operon],
image_directory: str, min_count: int = 10,
diff_against_csv: Optional[str] = None,
plot_ignored: bool = False,
color_by_blast_statistic: Optional[str] =
None, feature_colors: Optional[dict] = None,
nucl_per_line: Optional[int] = None)

Clusters operons by the order of their features and plots them in separate directories, adding the number of systems
to the directory name. Only systems that passed the rules specified as a operon_analyzer.rules.RuleSet
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object will be eligible to be plotted.

If a operon_analyzer.rules.FilterSet was used during analysis, that same FilterSet should be evaluated
on each operon before passing it into this function.

Parameters

• analysis_csv (str) – Path to the CSV file created by operon_analyzer.analyze.
analyze() .

• operons (iterable) – The operons of interest.

• image_directory (str) – The directory where all subdirectories will be created. Will be
created if it does not exist.

• min_count (int, optional) – Groups must have at least this many systems in order to be
plotted. Default is 10.

• diff_against_csv (str) – Path to a CSV file created by operon analyzer. Any clusters in
this file will be skipped when clustering operons from analysis_csv. The point of this is to
see only new systems when making slight alterations to rules.

• plot_ignored (bool, optional) – Toggles plotting of features that were marked as ig-
norable by operon_analyzer.rules.FilterSet .

• color_by_blast_statistic (str, optional) – Map an alignment quality statistic us-
ing the virdis color scale. For a list of alignment statistics captured by Opfi, see Opfi output
format .

• feature_colors (dict, optional) – If a labeled database was used during candidate
identification, features can be colored accordingly using “label”: “feature-color” pairs. For
more information about labeling sequence databases, see Annotating sequence databases .

operon_analyzer.overview

operon_analyzer.overview.load_counts(lines: IO[str])→ Tuple[Dict[str, int], Dict[str, int], Dict[int, int]]
Takes a stream of the output from operon_analyzer.analyze.analyze() and computes some useful statis-
tics. Namely, the number of times each rule was the only one broken for a contig, the number of times each rule
was broken regardless of context, and the occurrences of the count of broken rules per contig.

operon_analyzer.reannotation

operon_analyzer.reannotation.summarize(operons: List[operon_analyzer.genes.Operon],
reannotated_operons: List[operon_analyzer.genes.Operon])

For each protein in each operon, prints out how frequently it was reannotated to a particular protein. For example,
a putative Cas9 may be identified as a transposase when BLASTed with a more expansive database.
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operon_analyzer.load

operon_analyzer.load.load_sequence(operon: operon_analyzer.genes.Operon)→ Optional[Bio.Seq.Seq]
Loads the DNA sequence for a given operon’s contig.

operon_analyzer.load.load_gzipped_operons(filename: str)→ Iterator[operon_analyzer.genes.Operon]
Create a operon_analyzer.genes.Operon representation for each candidate present in gzipped output from
gene_finder.pipeline.Pipeline.

Parameters filename (str) – Path to the compressed pipeline CSV file.

operon_analyzer.load.load_operons(handle: IO[str])→ Iterator[operon_analyzer.genes.Operon]
Create a operon_analyzer.genes.Operon representation for each candidate present in output from
gene_finder.pipeline.Pipeline.

Parameters handle (IO) – Handle for the pipeline CSV file.

operon_analyzer.parse

operon_analyzer.parse.assemble_operons(lines: Iterator[Tuple[str, str, str, str, str, str, str, str, str, str]])→
Iterator[operon_analyzer.genes.Operon]

Takes the output from gene_finder.pipeline.Pipeline and loads all features, then assembles them into
operon_analyzer.genes.Operon objects.

To keep things memory efficient while not allowing redundant operons from being loaded, we keep track of the
hash of each operon, which is just an integer. Even for very large metagenomic databases this should use less
than a gigabyte of memory.

This is a helper function used by the loaders in operon_analyzer.load , but appears in the auto-generated
documentation for reference.

The next set of modules expose simple functions for dealing with CRISPR array sequences. Presumably, these would
only be useful to researchers interested in CRISPR-Cas genomic systems.

operon_analyzer.piler_parse

Parses piler-cr output to extract the sequences of every spacer.

class operon_analyzer.piler_parse.RepeatSpacer(position, repeat_len, spacer_len, sequence)

property position
Alias for field number 0

property repeat_len
Alias for field number 1

property sequence
Alias for field number 3

property spacer_len
Alias for field number 2

class operon_analyzer.piler_parse.BrokenSpacer(position, repeat_len, sequence)

property position
Alias for field number 0
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property repeat_len
Alias for field number 1

property sequence
Alias for field number 2

operon_analyzer.piler_parse.parse_pilercr_output(text: str, start: int, end: int)
Takes the text of pilercr raw output, and a start and end coordinate for an operon’s neighborhood, and extracts
all spacers in that region.

operon_analyzer.repeat_finder

class operon_analyzer.repeat_finder.Repeat(upstream_sequence, upstream_start, downstream_sequence,
downstream_start)

property downstream_sequence
Alias for field number 2

property downstream_start
Alias for field number 3

property upstream_sequence
Alias for field number 0

property upstream_start
Alias for field number 1

class operon_analyzer.repeat_finder.GRFResult(start, end, alignment)

property alignment
Alias for field number 2

property end
Alias for field number 1

property start
Alias for field number 0

operon_analyzer.repeat_finder.find_inverted_repeats(operon: operon_analyzer.genes.Operon,
buffer_around_operon: int, min_repeat_size:
int)

Searches an operon and the DNA flanking it for inverted repeats using GenericRepeatFinder. If found, they
will be added to the operon as Feature objects with the name “TIR” and the sequence. The strand will be set to
1 for the upstream sequence and -1 for the downstream sequence.

Parameters

• operon (Operon) – The operon_analyzer.genes.Operon object.

• buffer_around_operon (int) – The number of base pairs on either side of the operon to
search in addition to the operon’s internal sequence.

• min_repeat_size (int) – The minimum number of base pairs that an inverted repeat must
have.
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operon_analyzer.spacers

class operon_analyzer.spacers.AlignmentResult(match_count, spacer_sequence, contig_sequence,
contig_start, contig_end, spacer_alignment,
contig_alignment, comp_string, strand, spacer_order,
array_length)

property array_length
Alias for field number 10

property comp_string
Alias for field number 7

property contig_alignment
Alias for field number 6

property contig_end
Alias for field number 4

property contig_sequence
Alias for field number 2

property contig_start
Alias for field number 3

property match_count
Alias for field number 0

property spacer_alignment
Alias for field number 5

property spacer_order
Alias for field number 9

property spacer_sequence
Alias for field number 1

property strand
Alias for field number 8

operon_analyzer.spacers.find_self_targeting_spacers(operons: List[operon_analyzer.genes.Operon],
min_matching_fraction: float, num_processes:
int = 32)

For each given Operon, this will determine if CRISPR spacers target a location in the operon’s parent contig.
Matches with more than min_matching_fraction homology will be added to the Operon as a Feature named
“CRISPR target”.

1.5 Contributing

Thank you for your interest in contributing to Opfi. Contribututions can take many forms, including:

• Reporting a bug

• Discussing the current state of the code

• Submitting a fix

• Proposing new features
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1.5.1 Issues

Issues should be used to report problems or bugs with the library, to request new features, or to discuss potential changes
before PRs are created.

Good bug reports have:

• A summary of the issue

• Specific steps to reproduce the problem, preferably in the form of code examples

• A description of expected behavior

• A description of actual behavior

1.5.2 Pull Requests

In general, we use Github Flow. This means that all changes happen through Pull Requests:

1. Fork the repository to your own Github account

2. Clone the project to your machine

3. Create a branch locally with a succinct but descriptive name

4. Commit changes to the branch

5. Push changes to your fork

6. Open a PR in our repository and include a description of the changes and a reference to the issue the PR addresses

1.5.3 Coding Style

Contributors should attempt to adhere to the PEP8 style guide when possible, although this is not currently strictly
enforced. At a minimum, new contributions should follow a style that is consistent with the preexisting code base.

1.5.4 Testing

We use the pytest framework for creating unit tests. Please write tests for any new code contributed to this project.

1.5.5 License

By contributing, you agree that your contributions will be licensed under its MIT License.

1.5.6 Code of Conduct

We take our open source community seriously and hold ourselves and other contributors to high standards of commu-
nication. By participating and contributing to this project, you agree to uphold our Code of Conduct.
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1.5.7 Attribution

This document was adapted from the General Contributing Guidelines of the rextendr project, and from the contributing
template developed by briandk.
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