

Opfi

Welcome to the Opfi documentation site! Opfi is a modular, rule-based framework for creating gene cluster identification pipelines, particularly for large genomics or metagenomics datasets.

Opfi is implemented entirely in Python, and can be downloaded with conda or the from the Python Package Index. It consists of two major modules: Gene Finder, for discovery of novel gene clusters, and Operon Analyzer, for rule-based filtering, deduplication, visualization, and re-annotation of systems identified by Gene Finder.

Contents

	Getting Started
	Installation

	Dependencies

	Example Usage
	Example 1: Finding CRISPR-Cas systems in a cyanobacteria genome

	Example 2: Filter and classify CRISPR-Cas systems based on genomic composition

	Inputs and Outputs
	Building sequence databases

	BLAST advanced options

	Opfi output format

	API Reference
	Gene Finder

	Operon Analyzer

	Contributing
	Issues

	Pull Requests

	Coding Style

	Testing

	License

	Code of Conduct

	Attribution

Getting Started

Installation

The recommended way to install Opfi is with Bioconda [https://bioconda.github.io/], which requires the conda [https://docs.conda.io/en/latest/] package manager. This will install Opfi and all of its dependencies (which you can read more about below, see Dependencies).

Currently, Bioconda supports only 64-bit Linux and Mac OS. Windows users can still install Opfi with pip (see below); however, the complete installation procedure has not been fully tested on a Windows system.

Install with conda (Linux and Mac OS only)

First, set up conda and Bioconda following the quickstart [https://bioconda.github.io/user/install.html] guide. Once this is done, run:

conda install -c bioconda opfi

And that’s it! Note that this will install Opfi in the conda environment that is currently active. To create a fresh environment with Opfi installed, do:

conda create --name opfi-env -c bioconda opfi
conda activate opfi-env

Install with pip

This method does not automatically install non-Python dependencies, so they will need to be installed separately, following their individual installation instructions. A complete list of required software is provided below, see Dependencies. Once this step is complete, install Opfi with pip by running:

pip install opfi

Install from source

Finally, the latest development build may be installed directly from Github. First, non-Python Dependencies will need to be installed in the working environment. An easy way to do this is to first install Opfi with conda using the Install with conda (Linux and Mac OS only) method (we’ll re-install the development version of the Opfi package in the next step). Alternatively, dependencies can be installed individually.

Once dependencies have been installed in the working environment, run the following code to download and install the development build:

git clone https://github.com/wilkelab/Opfi.git
cd Opfi
pip install . # or pip install -e . for an editable version
pip install -r requirements # if conda was used, this can be skipped

Testing the build

Regardless of installation method, users can download and run Opfi’s suite of unit tests to confirm that the build is working as expected. First download the tests from Github:

git clone https://github.com/wilkelab/Opfi
cd Opfi

And then run the test suite using pytest:

pytest --runslow --runmmseqs --rundiamond

This may take a minute or so to complete.

Dependencies

Opfi uses the following bioinformatics software packages to find and annotate genomic features:

Table 1 Software dependencies

	Application

	Description

	NCBI BLAST+ [https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs]

	Protein and nucleic acid homology search tool

	Diamond [https://github.com/bbuchfink/diamond]

	Alternative to BLAST+ for fast protein homology searches

	MMseqs2 [https://github.com/soedinglab/MMseqs2]

	Alternative to BLAST+ for fast protein homology searches

	PILER-CR [https://www.drive5.com/pilercr/]

	CRISPR repeat detection

	Generic Repeat Finder [https://github.com/bioinfolabmu/GenericRepeatFinder]

	Transposon-associated repeat detection

The first three (BLAST+, Diamond, and MMseqs2) are popular homology search applications, that is, programs that look for local similarities between input sequences (either protein or nucleic acid) and a target. These are used by Opfi in gene_finder.pipeline.Pipeline for annotation of genes or non-coding regions of interest in the input genome/contig. The user specifies which homology search tool to use during pipeline setup (see gene_finder.pipeline.Pipeline for details). Note that the BLAST+ distribution contains multiple programs for homology searching, three of which (blastp, blastn, and PSI-BLAST) are currently supported by Opfi.

The following table summarizes the main difference between each homology search program. It may help users decide which application will best meet their needs. Note that performance tests are inherently hardware and context dependent, so this should be taken as a loose guide, rather than a definitive comparison.

Table 2 Comparison of homology search programs supported by Opfi

	Application

	Relative sensitivity

	Relative speed

	Requires a protein or nucleic acid sequence database?

	Diamond

	+

	++++

	protein

	MMseqs2

	++

	+++

	protein

	blastp

	+++

	++

	protein

	PSI-BLAST

	++++

	+

	protein

	blastn

	NA

	NA

	nucleic acid

The last two software dependencies, PILER-CR and Generic Repeat Finder (GRF), deal with annotation of repetive sequences in DNA. PILER-CR identifies CRISPR arrays, regions of alternatating ~30 bp direct repeat and variable sequences that play a role in prokaryotic immunity. GRF identifies repeats associated with transposable elements, such as terminal inverted repeats (TIRs) and long terminal repeats (LTRs).

Example Usage

Example 1: Finding CRISPR-Cas systems in a cyanobacteria genome

In this example, we will annotate and visualize CRISPR-Cas systems in the cyanobacteria species Rippkaea orientalis. CRISPR-Cas is a widespread bacterial defense system, found in at least 50% of all known prokaryotic species. This system is significant in that it can be leveraged as a precision gene editing tool, an advancement that was awarded the 2020 Nobel Prize in Chemistry. The genome of R. orientalis harbors two complete CRISPR-Cas loci (one chromosomal, and one extrachromosomal/plasmid).

You can download the complete assembled genome here [https://www.ncbi.nlm.nih.gov/assembly/GCF_000024045.1/]; it is also available at https://github.com/wilkelab/Opfi under tutorials, along with the other data files necessary to run these examples, and an interactive jupyter notebook version of this tutorial.

This tutorial assumes the user has already installed Opfi and all dependencies (if installing with conda, this is done automatically). Some familiarity with BLAST and the basic homology search algorithm may also be helpful, but is not required.

1. Use the makeblastdb utility to convert a Cas protein database to BLAST format

We start by converting a Cas sequence database to a format that BLAST can recognize, using the command line utility makeblastdb, which is part of the core NCBI BLAST+ distribution. A set of ~20,000 non-redundant Cas sequences, downloaded from Uniprot [https://www.uniprot.org/uniref/] is available as a tar archive tutorials/cas_database.tar.gz . We’ll make a new directory, “blastdb”, and extract sequences there:

mkdir blastdb
cd blastdb && tar -xzf cas_database.tar.gz && cd ..

Next, create two BLAST databases for the sequence data: one containing Cas1 sequences only, and another that contains the remaining Cas sequences.

cd blastdb && cat cas1.fasta | makeblastdb -dbtype prot -title cas1 -hash_index -out cas1_db && cd ..
cd blastdb && cat cas[2-9].fasta cas1[0-2].fasta casphi.fasta | makeblastdb -dbtype prot -title cas_all -hash_index -out cas_all_but_1_db && cd ..

-dbtype prot simply tells makeblastdb to expect amino acid sequences. We use -title and -out to name the database (required by BLAST) and to prefix the database files, respectively. -hash_index directs makeblastdb to generate a hash index of protein sequences, which can speed up computation time.

2. Use Gene Finder to search for CRISPR-Cas loci

CRISPR-Cas systems are extremely diverse. The most recent classification effort [https://www.nature.com/articles/s41579-019-0299-x] identifies 6 major types, and over 40 subtypes, of compositionally destinct systems. Although there is sufficent sequence similarity between subtypes to infer the existence of a common ancestor, the only protein family present in the majority of CRISPR-cas subtypes is the conserved endonuclease Cas1. For our search, we will define candidate CRISPR-cas loci as having, minimally, a cas1 gene.

First, create another directory for output:

mkdir example_1_output

The following bit of code uses Opfi’s gene_finder.pipeline module to search for CRISPR-Cas systems:

from gene_finder.pipeline import Pipeline
import os

genomic_data = "GCF_000024045.1_ASM2404v1_genomic.fna.gz"
output_directory = "example_1_output"

p = Pipeline()
p.add_seed_step(db="blastdb/cas1_db", name="cas1", e_val=0.001, blast_type="PROT", num_threads=1)
p.add_filter_step(db="blastdb/cas_all_but_1_db", name="cas_all", e_val=0.001, blast_type="PROT", num_threads=1)
p.add_crispr_step()

use the input filename as the job id
results will be written to the file <job id>_results.csv
job_id = os.path.basename(genomic_data)
results = p.run(job_id=job_id, data=genomic_data, output_directory=output_directory, min_prot_len=90, span=10000, gzip=True)

First, we initialize a gene_finder.pipeline.Pipeline object, which keeps track of all search parameters, as well as a running list of systems that meet search criteria. Next, we add three search steps to the pipeline:

	gene_finder.pipeline.Pipeline.add_seed_step() : BLAST is used to search the input genome against a database of Cas1 sequences. Regions around putative Cas1 hits become the intial candidates, and the rest of the genome is ignored.

	gene_finder.pipeline.Pipeline.add_filter_step() : Candidate regions are searched for any additional Cas genes. Candidates without at least one additional putative Cas gene are also discarded.

	gene_finder.pipeline.Pipeline.add_crispr_step() : Remaining candidates are annotated for CRISPR repeat sequences using PILER-CR.

Finally, we run the pipeline, executing steps in the order they we added. min_prot_len sets the minimum length (in amino acid residues) of hits to keep (really short hits are unlikely real protein encoding genes). span is the region directly up- and downstream of initial hits. So, each candidate system will be about 20 kbp in length. Results are written to a single CSV file. Final candidate loci contain at least one putative Cas1 gene and one additional Cas gene. As we will see, this relatively permissive criteria captures some non-CRISPR-Cas loci. Opfi has additional modules for reducing unlikely systems after the gene finding stage.

3. Visualize annotated CRISPR-Cas gene clusters with Operon Analyzer

It is sometimes useful to visualize candidate systems, especially during the exploratory phase of a genomics survey. Opfi provides a few functions for visualizing candidate systems in operon_analyzer.visualize. We’ll use these to visualize the CRISPR-Cas gene clusters in R. orientalis:

import csv
import sys
from operon_analyzer import load, visualize

feature_colors = { "cas1": "lightblue",
 "cas2": "seagreen",
 "cas3": "gold",
 "cas4": "springgreen",
 "cas5": "darkred",
 "cas6": "thistle",
 "cas7": "coral",
 "cas8": "red",
 "cas9": "palegreen",
 "cas10": "yellow",
 "cas11": "tan",
 "cas12": "orange",
 "cas13": "saddlebrown",
 "casphi": "olive",
 "CRISPR array": "purple"
 }

read in the output from Gene Finder and create a gene diagram for each cluster (operon)
with open("example_1_output/GCF_000024045.1_ASM2404v1_genomic.fna.gz_results.csv", "r") as operon_data:
 operons = load.load_operons(operon_data)
 visualize.plot_operons(operons=operons, output_directory="example_1_output", feature_colors=feature_colors, nucl_per_line=25000)

Running this script produces the following three gene diagrams, one for each system in the input CSV:

[image: _images/operon_image_1.png]
Fig. 1 A CRISPR-Cas system in the chromosome of R. orientalis.

[image: _images/operon_image_2.png]
Fig. 2 A second CRISPR-Cas system in R. orientalis plasmid 1.

[image: _images/operon_image_3.png]
Fig. 3 An R. orientalis locus with a putative CRISPR-Cas gene.

We can see that both CRISPR-Cas systems were identified (Fig. 1 and Fig. 2). We also see some systems that don’t resemble functional CRISPR-Cas operons (Fig. 3). Because we used a relatively permissive e-value threshhold of 0.001 when running BLAST, Opfi retained regions with very low sequence similarity to true CRISPR-Cas genes. In fact, these regions are likely not CRISPR-Cas loci at all. Using a lower e-value would likely eliminate these “false positive” systems, but operon_analyzer.rules exposes functions for filtering out unlikely candidates after the intial BLAST search.

In general, we have found that using permissive BLAST parameters intially, and then filtering or eliminating candidates during the downstream analysis, is an effective way to search for gene clusters in large amounts of genomic/metagenomic data. In this toy example, we could re-run BLAST many times without significant cost. But on a more realistic dataset, needing to re-do the computationally expensive homology search could detrail a project. Since the optimal search parameters may not be known a priori, it can be better to do a permissive homology search initially, and then narrow down results later.

Finally, clean up the temporary directories, if desired:

rm -r example_1_output blastdb

Example 2: Filter and classify CRISPR-Cas systems based on genomic composition

As discussed in the previous example, known CRISPR-Cas systems fall into 6 broad categories, based on the presence of particular “signature” genes, as well as overall composition and genomic architecture. In this example, we will use Opfi to search for and classify CRISPR-Cas systems in ~300 strains of fusobacteria.

This dataset was chosen because it is more representative (in magnitude) of what would be encountered in a real genomics study. Additionally, the fusobacteria phylum contains a variety of CRISPR-Cas subtypes. Given that the homology search portion of the analysis takes several hours (using a single core) to complete, we have pre-run Gene Finder using the same setup as the previous example.

1. Make another temporary directory for output:

mkdir example_2_output

2. Filter Gene Finder output and extract high-confidence CRISPR-Cas systems

The following code reads in unfiltered output from gene_finder.pipeline.Pipeline and applies a set of conditions (“rules”) to accomplish two things:
1. Select (and bin) systems according to type, and,
2. Eliminate candidates that likely do not represent true CRISPR-Cas systems

To do this, we’ll leverage the operon_analyzer.rules and operon_analyzer.analyze modules.

from operon_analyzer import analyze, rules

fs = rules.FilterSet().pick_overlapping_features_by_bit_score(0.9)
cas_types = ["I", "II", "III", "V"]

rulesets = []
type I rules
rulesets.append(rules.RuleSet().contains_group(feature_names = ["cas5", "cas7"], max_gap_distance_bp = 1000, require_same_orientation = True) \
 .require("cas3"))
type II rules
rulesets.append(rules.RuleSet().contains_at_least_n_features(feature_names = ["cas1", "cas2", "cas9"], feature_count = 3) \
 .minimum_size("cas9", 3000))
type III rules
rulesets.append(rules.RuleSet().contains_group(feature_names = ["cas5", "cas7"], max_gap_distance_bp = 1000, require_same_orientation = True) \
 .require("cas10"))
type V rules
rulesets.append(rules.RuleSet().contains_at_least_n_features(feature_names = ["cas1", "cas2", "cas12"], feature_count = 3))

for rs, cas_type in zip(rulesets, cas_types):
 with open("refseq_fusobacteria.csv", "r") as input_csv:
 with open(f"example_2_output/refseq_fuso_filtered_type{cas_type}.csv", "w") as output_csv:
 analyze.evaluate_rules_and_reserialize(input_csv, rs, fs, output_csv)

The rule sets are informed by an established CRISPR-Cas classification system, which you can learn more about in this paper [https://www.nature.com/articles/s41579-019-0299-x] . The most recent system recognizes 6 major CRISPR-Cas types, but since fusobacteria doesn’t contain type IV or VI systems that can be identified with our protein dataset, we didn’t define the corresponding rule sets.

3. Verify results with additional visualizations

Altogther, this analysis will identify several hundred systems. We won’t look at each system individually (but you are free to do so!). For the sake of confirming that the code ran as expected, we’ll create gene diagrams for just the type V systems, since there are only two:

import csv
import sys
from operon_analyzer import load, visualize

feature_colors = { "cas1": "lightblue",
 "cas2": "seagreen",
 "cas3": "gold",
 "cas4": "springgreen",
 "cas5": "darkred",
 "cas6": "thistle",
 "cas7": "coral",
 "cas8": "red",
 "cas9": "palegreen",
 "cas10": "yellow",
 "cas11": "tan",
 "cas12": "orange",
 "cas13": "saddlebrown",
 "casphi": "olive",
 "CRISPR array": "purple"
 }

read in the output from Gene Finder and create a gene diagram for each cluster (operon)
with open("example_2_output/refseq_fuso_filtered_typeV.csv", "r") as operon_data:
 operons = load.load_operons(operon_data)
 visualize.plot_operons(operons=operons, output_directory="example_2_output", feature_colors=feature_colors, nucl_per_line=25000)

The plotted systems should look like this:

[image: _images/operon_image_4.png]
Fig. 4 A type V CRISPR-Cas system.

[image: _images/operon_image_5.png]
Fig. 5 A second type V CRISPR-Cas system.

Finally, clean up the temporary output directory, if desired:

rm -r example_2_output

Inputs and Outputs

Building sequence databases

To search for gene clusters with Opfi, users must compile representative protein (or nucleic acid) sequences for any genes expected in target clusters (or for any non-essential accessory genes of interest). These may be from a pre-existing, private collection of sequences (perhaps from a previous bioinformatics analysis). Alternatively, users may download sequences from a publically available database such as Uniprot [https://www.uniprot.org/] (maintained by the European Bioinformatics Institute [https://www.ebi.ac.uk/]) or one of the databases [https://www.ncbi.nlm.nih.gov/] provided by the National Center for Biotechnology Information.

Once target sequences have been compiled, they must be converted to an application-specific database format. Opfi currently supports BLAST+, mmseqs2, and diamond for homology searching:

	Instructions for creating sequence databases for BLAST using makeblastdb [https://www.ncbi.nlm.nih.gov/books/NBK569841/]

	Instructions for creating sequence databases for mmseqs2 using mmseqs createdb [https://github.com/soedinglab/mmseqs2/wiki#searching]

	Diamond makedb command options [https://github.com/bbuchfink/diamond/wiki/3.-Command-line-options#makedb-options]

The FASTA file format

Both genomic input data and reference sequence data should be in FASTA [https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp] format. This is a simple flat text representation of biological sequence data, where individual sequences are delineated by the > greater than character. For example:

>UniRef50_Q02ML7 CRISPR-associated endonuclease Cas1 n=1700 RepID=CAS1_PSEAB
MDDISPSELKTILHSKRANLYYLQHCRVLVNGGRVEYVTDEGRHSHYWNIPIANTTSLLL
GTGTSITQAAMRELARAGVLVGFCGGGGTPLFSANEVDVEVSWLTPQSEYRPTEYLQRWV
GFWFDEEKRLVAARHFQRARLERIRHSWLEDRVLRDAGFAVDATALAVAVEDSARALEQA
PNHEHLLTEEARLSKRLFKLAAQATRYGEFVRAKRGSGGDPANRFLDHGNYLAYGLAATA
TWVLGIPHGLAVLHGKTRRGGLVFDVADLIKDSLILPQAFLSAMRGDEEQDFRQACLDNL
SRAQALDFMIDTLKDVAQRSTVSA
>UniRef50_Q2RY21 CRISPR-associated endonuclease Cas1 1 n=1034 RepID=CAS1A_RHORT
MADPAFVPLRPIAIKDRSSIVFLQRGQLDVVDGAFVLIDQEGVRVQIPVGGLACLMLEPG
TRITHAAIVLCARVGCLVIWVGERGTRLYAAGQPGGARADRLLFQARNALDETARLNVVR
EMYRRRFDDDPPARRSVDQLRGMEGVRVREIYRLLAKKYAVDWNARRYDHNDWDGADIPN
RCLSAATACLYGLCEAAILAAGYAPAIGFLHRGKPQSFVYDVADLYKVETVVPTAFSIAA
KIAAGKGDDSPPERQVRIACRDQFRKSGLLEKIIPDIEEILRAGGLEPPLDAPEAVDPVI
PPEEPSGDDGHRG

The sequence definition (defline) comes directly after the > character, and should be on a separate line from the sequence (which can be on one or more subsequent lines). There is no specific defline format, however, Opfi requires that, for both genomic input and sequence data, each definition line contain a unique sequence identifer. This should be a single word/token immediately following the > character (i.e. spaces between the > character and the identifier are not allowed). Any additional text on the defline is parsed as a single string, and appears in the output CSV (see Opfi output format).

Tip

Biological sequences downloaded from most public databases will have an accession number/identifier by default.

Annotating sequence databases

To take full advantage of the rule-based filtering methods in operon_analyzer.rules, users are encouraged to annotate reference sequences with a name/label that is easily searched. Labels can be as broad or as specific as is necessary to provide meaningful annotation of target gene clusters.

Gene labels are parsed from sequence deflines; specifically, Opfi looks for the second word/token following the > character. For example, the following FASTA sequence has been annotated with the label “cas1”:

>UniRef50_Q02ML7 cas1 CRISPR-associated endonuclease Cas1 n=1700 RepID=CAS1_PSEAB
MDDISPSELKTILHSKRANLYYLQHCRVLVNGGRVEYVTDEGRHSHYWNIPIANTTSLLL
GTGTSITQAAMRELARAGVLVGFCGGGGTPLFSANEVDVEVSWLTPQSEYRPTEYLQRWV
GFWFDEEKRLVAARHFQRARLERIRHSWLEDRVLRDAGFAVDATALAVAVEDSARALEQA
PNHEHLLTEEARLSKRLFKLAAQATRYGEFVRAKRGSGGDPANRFLDHGNYLAYGLAATA
TWVLGIPHGLAVLHGKTRRGGLVFDVADLIKDSLILPQAFLSAMRGDEEQDFRQACLDNL
SRAQALDFMIDTLKDVAQRSTVSA

After running gene_finder.pipeline.Pipeline, users could select candidates with hits against this sequence using the following rule set:

from operon_analyzer.rules import RuleSet

rs = RuleSet.require("cas1")

In practice, a genomics search might use a reference database of hundreds (or even thousands) of representative protein sequences, in which case labeling each sequence individually would be tedious. It is recommended to organize sequences into groups of related proteins that can be given a single label. This script uses the Python package Biopython to annotate sequences in a multi-sequence FASTA file:

from Bio import SeqIO
import os, sys

def annotate_reference(prot_ref_file, label):
 records = list(SeqIO.parse(ref_fasta, "fasta"))

 for record in records:
 des = record.description.split()
 prot_id = des.pop(0)
 des_with_label = "{} {} {}".format(prot_id, label, " ".join(des))
 record.description = des_with_label

 SeqIO.write(records, ref_fasta, "fasta")

if __name__ == "__main__":
 ref_fasta = sys.argv[1]
 label = sys.argv[2]
 annotate_reference(ref_fasta, label)

It is possible to use the entire sequence description (i.e. all text following the sequence identifier) as the gene label. This is particularly useful when using a pre-built database like nr [https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/], which contains representative protein sequences for many different protein families. When using sequence databases that haven’t been annotated, users should set parse_descriptions=False for each gene_finder.pipeline.Pipeline add_step() method call.

Converting sequence files to a sequence database

Once reference sequences have been compiled (and, optionally, labeled) they must be converted to a sequence database format that is specific to the homology search program used. Currently, Opfi supports BLAST, mmseqs2, and diamond. Each software package is automatically installed with a companion utility program for generating sequence databases. The following example shows what a typical call to makeblastdb, the BLAST+ database utility program, might look like:

makeblastdb -in "my_sequences.fasta" -out my_sequences/db -dbtype prot -title "my_sequences" -hash_index

The command takes a text/FASTA file my_sequences.fasta as input, and writes the resulting database files to the directory my_sequences. Database files are prefixed with “db”. -dbtype prot specifies that the input is amino acid sequences. We use -title to name the database (required by BLAST). -hash_index directs makeblastdb to generate a hash index of protein sequences, which can speed up computation time.

Tip

mmseqs2 and diamond have similar database creation commands, see Building sequence databases.

BLAST advanced options

BLAST+ programs have a number of tunable parameters that can, for example, be used to adjust the sensitivity of the search algorithm. We anticipate that application defaults will be sufficient for most users; nevertheless, it is possible to use non-default program options by passing them as keyword arguments to gene_finder.pipeline.Pipeline add_step() methods.

For example, when using blastp on the command line, we could adjust the number of CPUs to four by passing the argument -num_threads 4 to the program. When using Opfi, this would look like num_threads=4.

Flags (boolean arguments that generally do not precede additional data) are also possible. For example, the command line flag -use_sw_tback tells blastp to compute locally optimal Smith-Waterman alignments. The correct way to specify this behavior via the gene_finder.pipeline.Pipeline API would be to use the argument use_sw_tback=True.

Below is a list of options accepted by Opfi. Note that some BLAST+ options are not allowed, mainly those that modify BLAST output.

	Program

	Allowed Options

	blastp and psiblast

	dbsize word_size gapopen gapextend qcov_hsp_perc xdrop_ungap xdrop_gap xdrop_gap_final searchsp sum_stats seg soft_masking matrix threshold culling_limit window_size num_threads comp_based_stats gilist seqidlist negative_gilistdb_soft_mask db_hard_mask entrez_query max_hspsbest_hit_overhang best_hit_score_edge max_target_seqsimport_search_strategy export_search_strategy num_alignments

	blastp only

	task

	psiblast only

	gap_trigger num_iterations out_pssm out_ascii_pssm pseudocount inclusion_ethresh

	blastp (flags)

	lcase_masking ungapped use_sw_tback remote

	psiblast (flags)

	lcase_masking use_sw_tback save_pssm_after_last_round save_each_pssm remote

	blastn

	filtering_algorithm sum_stats window_masker_db window_size template_type version parse_deflines min_raw_gapped_score string format max_hsps taxids negative_taxids num_alignments strand off_diagonal_range subject_besthit num_sequences no_greedy negative_taxidlist culling_limit xdrop_ungap open_penalty DUST_options sorthits xdrop_gap_final negative_gilist subject use_index bool_value filename seqidlist task_name sort_hits database_name lcase_masking query_loc subject_loc sort_hsps line_length boolean db_hard_mask negative_seqidlist template_length filtering_db filtering_database penalty searchsp ungapped type gapextend db_soft_mask dbsize qcov_hsp_perc sorthsps window_masker_taxid index_name export_search_strategy float_value soft_masking gilist entrez_query show_gis best_hit_score_edge gapopen subject_input_file range html word_size best_hit_overhang perc_identity input_file num_descriptions xdrop_gap dust taxidlist max_target_seqs num_threads task remote int_value extend_penalty reward import_search_strategy num_letters

You can read more about BLAST+ options in the BLAST+ appendices [https://www.ncbi.nlm.nih.gov/books/NBK279684/].

Note

Using advanced options with mmseqs2 and diamond is not supported at this time.

Opfi output format

Results from gene_finder.pipeline.Pipeline searches are written to a single CSV file. Below is an example from the tutorial (see Example Usage):

	NC_013161.1

	503817..525707

	cas1

	514110..513817

	lcl|514110|513817|2|-1

	-1

	UniRef50_A0A179D3U4

	1.24e-07

	UniRef50_A0A179D3U4 cas1 CRISPR-associated endoribonuclease Cas2 n=2 Tax=Thermosulfurimonas dismutans TaxID=999894 RepID=A0A179D3U4_9BACT

	MNTLFYLIIYDLPATKAGNKRRKRLYEMLCGYGNWTQFSVFECFLTAVQFANLQSKLENLIQPNEDSVRIYILDAGSVRKTLTYGSEKPRQVDTLIL

	42.4

	98

	51

	43.137

	22

	29

	31

	0

	0

	60.78

	53

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	cas1

	515084..514107

	lcl|515084|514107|3|-1

	-1

	UniRef50_A0A1Z3HN48

	4.00e-177

	UniRef50_A0A1Z3HN48 cas1 CRISPR-associated endonuclease Cas1 n=83 Tax=Cyanobacteria TaxID=1117 RepID=A0A1Z3HN48_9CYAN

	MSILYLTQPDAVLSKKQEAFHVALKQEDGSWKKQLIPAQTVEQIVLIGYPSITGEALCYALELGIPVHYLSCFGKYLGSALPGYSRNGQLRLAQYHVHDNEEQRLALVKTVVTGKIHNQYHVLYRYQQKDNPLKEHKQLVKSKTTLEQVRGVEGLAAKDYFNGFKLILDSQWNFNGRNRRPPTDPVNALLSFAYGLLRVQVTAAVHIAGLDPYIGYLHETTRGQPAMVLDLMEEFRPLIADSLVLSVISHKEIKPTDFNESLGAYLLSDSGRKTFLQAFERKLNTEFKHPVFGYQCSYRRSIELQARLFSRYLQENIPYKSLSLR

	489

	1260

	325

	69.538

	226

	99

	276

	0

	0

	84.92

	100

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	cas1

	515707..515117

	lcl|515707|515117|1|-1

	-1

	UniRef50_A0A2I8A541

	1.64e-100

	UniRef50_A0A2I8A541 cas1 CRISPR-associated exonuclease Cas4 n=83 Tax=Cyanobacteria TaxID=1117 RepID=A0A2I8A541_9NOSO

	MIDNYLPLAYLNAFEYCTRRFYWEYVLGEMANNEHIIIGRHLHRNINQEGIIKEEDTIIHRQQWVWSDRLQIKGIIDAVEEKESSLVPVEYKKGRMSQHLNDHFQLCAAALCLEEKTGKIITYGEIFYHANRRRQRVDFSDRLRCSTEQAIHHAHELVNQKMPSPINNSKKCRDCSLKTMCLPKEVKQLRNSLISD

	285

	729

	195

	66.154

	129

	66

	162

	0

	0

	83.08

	99

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	cas2

	514110..513817

	lcl|514110|513817|2|-1

	-1

	UniRef50_A0A1Z3HN55

	7.36e-46

	UniRef50_A0A1Z3HN55 cas2 CRISPR-associated endoribonuclease Cas2 n=68 Tax=Cyanobacteria TaxID=1117 RepID=A0A1Z3HN55_9CYAN

	MNTLFYLIIYDLPATKAGNKRRKRLYEMLCGYGNWTQFSVFECFLTAVQFANLQSKLENLIQPNEDSVRIYILDAGSVRKTLTYGSEKPRQVDTLIL

	142

	357

	94

	67.021

	63

	31

	77

	0

	0

	81.91

	97

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	cas4

	515084..514107

	lcl|515084|514107|3|-1

	-1

	UniRef50_A0A1E5G3J0

	1.01e-72

	UniRef50_A0A1E5G3J0 cas4 CRISPR-associated endonuclease Cas1 n=4 Tax=Firmicutes TaxID=1239 RepID=A0A1E5G3J0_9BACL

	MSILYLTQPDAVLSKKQEAFHVALKQEDGSWKKQLIPAQTVEQIVLIGYPSITGEALCYALELGIPVHYLSCFGKYLGSALPGYSRNGQLRLAQYHVHDNEEQRLALVKTVVTGKIHNQYHVLYRYQQKDNPLKEHKQLVKSKTTLEQVRGVEGLAAKDYFNGFKLILDSQWNFNGRNRRPPTDPVNALLSFAYGLLRVQVTAAVHIAGLDPYIGYLHETTRGQPAMVLDLMEEFRPLIADSLVLSVISHKEIKPTDFNESLGAYLLSDSGRKTFLQAFERKLNTEFKHPVFGYQCSYRRSIELQARLFSRYLQENIPYKSLSLR

	233

	595

	333

	39.940

	133

	179

	191

	6

	21

	57.36

	98

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	cas4

	515707..515117

	lcl|515707|515117|1|-1

	-1

	UniRef50_A0A2I8A541

	1.92e-99

	UniRef50_A0A2I8A541 cas4 CRISPR-associated exonuclease Cas4 n=83 Tax=Cyanobacteria TaxID=1117 RepID=A0A2I8A541_9NOSO

	MIDNYLPLAYLNAFEYCTRRFYWEYVLGEMANNEHIIIGRHLHRNINQEGIIKEEDTIIHRQQWVWSDRLQIKGIIDAVEEKESSLVPVEYKKGRMSQHLNDHFQLCAAALCLEEKTGKIITYGEIFYHANRRRQRVDFSDRLRCSTEQAIHHAHELVNQKMPSPINNSKKCRDCSLKTMCLPKEVKQLRNSLISD

	285

	729

	195

	66.154

	129

	66

	162

	0

	0

	83.08

	99

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	cas6

	516642..515833

	lcl|516642|515833|2|-1

	-1

	UniRef50_A0A654SHL3

	2.64e-108

	UniRef50_A0A654SHL3 cas6 CRISPR_Cas6 domain-containing protein n=30 Tax=Cyanobacteria TaxID=1117 RepID=A0A654SHL3_9CYAN

	MVQDILPQLHKYQLQSLVIELGVAKQGKLPATLSRAIHACVLNWLSLADSQLANQIHDSQISPLCLSGLIGNRRQPYSLLGDYFLLRIGVLQPSLIKPLLKGIEAQETQTLELGKFPFIIRQVYSMPQSHKLSQLTDYYSLALYSPTMTEIQLKFLSPTSFKQIQGVQPFPLPELVFNSLLRKWNHFAPQELKFPEIQWQSFVSAFELKTHALKMEGGAQIGSQGWAKYCFKDTEQARIASILSHFAFYAGVGRKTTMGMGQTQLLVNT

	314

	804

	270

	55.926

	151

	118

	195

	1

	1

	72.22

	100

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	cas5

	517387..516611

	lcl|517387|516611|1|-1

	-1

	UniRef50_A0A2I8AFZ3

	1.43e-118

	UniRef50_A0A2I8AFZ3 cas5 Type I-D CRISPR-associated protein Cas5/Csc1 n=62 Tax=Cyanobacteria TaxID=1117 RepID=A0A2I8AFZ3_9NOSO

	MNIYYCQLTLHDNIFFATREMGLLYETEKYLHNWALSYAFFKGTYIPHPYRLQGKSAQKPDYLDSTGEQSLAHLNRLKIYVFPAKPLRWSYQINTFKAAQTTYYGKSQQFGDKGANRNYPINYGRAKELAVGSEYHTFLISSQELNIPHWIRVGKWSAKVEVTSYLIPQKAISQHSGIYLCDHPLNPIDLPFDQELLLYNRIVMPPVSLVSQAQLQGNYCKINKNNWNDCPSNLTDLPQQICLPLGVNYGAGYIASAS

	338

	866

	252

	65.079

	164

	71

	194

	3

	17

	76.98

	98

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	cas7

	518600..517530

	lcl|518600|517530|3|-1

	-1

	UniRef50_B7JVM8

	0.0

	UniRef50_B7JVM8 cas7 CRISPR-associated protein Csc2 n=52 Tax=Cyanobacteria TaxID=1117 RepID=B7JVM8_RIPO1

	MSILETLKPQFQSAFPRLASANYVHFIMLRHSQSFPVFQTDGVLNTVRTQAGLMAKDSLSRLVMFKRKQTTPERLTGRELLRSLNITTADKNDKEKGCEYNGEGSCKKCPDCIIYGFAIGDSGSERSKVYSDSTFSLSAYEQSHRTFTFNAPFEGGTMSEQGVMRSAINELDHILPEITFPNIETLRDSTYEGFIYVLGNILRTKRYGAQESRTGTMKNHLVGIAFCDGEIFSNLRFTQALYDGLEGDVNKPIDEICYQASQIVQTLLSDEPVRKIKTIFGEELNHLINEVSGIYQNDALLTETLNMLYQQTKTYSENHGSLAKSKPPKAEGNKSKGRTKKKGDDEQTSLDLNIEE

	733

	1891

	356

	98.876

	352

	4

	354

	0

	0

	99.44

	100

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	cas10

	521597..518673

	lcl|521597|518673|3|-1

	-1

	UniRef50_B7KB38

	0.0

	UniRef50_B7KB38 cas10 CRISPR-associated protein Csc3 n=52 Tax=Cyanobacteria TaxID=1117 RepID=B7KB38_GLOC7

	MTLLQILLLETISQDTDPILISYLETVLPAMEPEFALIPALGGSQQIHYQNLIAIGNRYAQENAKRFSDKADQNLLVHVLNALLTAWNLVDHLTKPLSDIEKYLLCLGLTLHDYNKYCLGHGEESPKVSNINEIINICQELGKKLNFQAFWSDWEQYLPEIVYLAQNTQFKAGTNAIPANYPLFTLADSRRLDLPLRRLLAFGDIAVHLQDPADIISKTGGDRLREHLRFLGIKKALVYHRLRDTLGILSNGIHNATLRFAKDLNWQPLLFFAQGVIYLAPIDYTSPEKMELQGFIWQEISQLLASSMLKGEIGFKRDGKGLKVAPQTLELFTPVQLIRNLADVINVKVANAKVPATPKRLEKLELTDIERQLLEKGADLRADRIAELIILAQREFLADSPEFIDWTLQFWGLEKQITAEQTQEQSGGVNYGWYRVAANYIANHSTLSLEDVSGKLVDFCQQLADWATSNQLLSSHSSSTFEVFNSYLEQYLEIQGWQSSTPNFSQELSTYIMAKTQSSKQPICSLSSGEFISEDQMDSVVLFKPQQYSNKNPLGGGKIKRGISKIWALEMLLRQALWTVPSGKFEDQQPVFLYIFPAYVYSPQIAAAIRSLVNDMKRINLWDVRKHWLHEDMNLDSLRSLQWRKEEAEVGRFKDKYSRADIPFMGTVYTTTRGKTLTEAWIDPAFLTLALPILLGVKVIATSSSVPLYNSDNDFLDSVILDAPAGFWQLLKLSTSLRIQELSVALKRLLTIYTIHLDNRSNPPDARWQALNSTVREVITDVLNVFSIADEKLREDQREASPQEVQRYWKFAEIFAQGDTIMTEKLKLTKELVRQYRTFYQVKWSESSHTILLPLTKALEEILSTPEHWDDEELILQGAGILNDALDRQEVYKRPLLQDKSIPYEIRKQQELQAIHQFMTTCVKELFGQMCKGDRALLQEYRNRIKSGAESAYKLLAFEEKSNSSQQQKSSEDQ

	1073

	2775

	978

	56.544

	553

	399

	710

	12

	26

	72.60

	99

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	cas3

	523760..521655

	lcl|523760|521655|3|-1

	-1

	UniRef50_A0A168SWH5

	0.0

	UniRef50_A0A168SWH5 cas3 Type I-D CRISPR-associated helicase Cas3 n=2 Tax=Phormidium TaxID=1198 RepID=A0A168SWH5_9CYAN

	MKINLKPLYSKLNAGVGNCPLGCQEMCRVQQQAPQFKAPSGCNCPLYQHQAESYPYLTKGDTDIIFITAPTAGGKSLLASLPSLLDPNFRMMGLYPTIELVEDQTEQQNNYHNLFGLNSEERIDKLFGVELTQRIKEFNSNRFQQLWLAIETKEVILTNPDIFHLMTHFRYRDNAYGTDELPLALAKFPDLWVFDEFHIFGAHQETAVLNSMMLIRRTQQQKKRFLFTSATVKTDFVEQLKQTGLKIKEIAGEYKSEAQQGYRQILQAVELSIINLKEEDGFSWLINNAAKIRKILKAEDKGRGLIILNSVVMVRRISQELQSLLPEIVVREISGRIDRKERSQTQQLLQEEEKPVLVVATSAVDVGVDFRIHLLITESSDSATVIQRLGRLGRHSGFSNYQAFLLLSGRTPWVINRLQEKLESKQDVTREELIEAIQYAFDPPKEYQEYRNRWGAIQVQGMFSQMMGSNAKVMQSIKERISEDLKRIYGNTLDNKAWYAMGHNCLGKAIQSELLRFRGGSTLQAAVWDEQRFYTYDLLRLLPYATVDILDRETFLKAATKAGHIEEAFPSQYLQVYLRIEQWLDKRLNLNLFCNRESDELLVGKLFLITRLKLDGHPQSDVISCLSRCNLLTFLVPVDRSRTQSHWEVSYCLHLNPLFGLYRLKDASEQAYACAFNQDALLLEALNWKLTKFYRERSLIF

	671

	1731

	720

	49.028

	353

	341

	479

	10

	26

	66.53

	100

	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

	NC_013161.1

	503817..525707

	CRISPR array

	512560..513624

	
	
	
	
	Copies: 15, Repeat: 37, Spacer: 36

	–GTTTCAATCCC———–ATTACTAGGATTCATTAAAAAGAAAC

	
	
	
	
	
	
	
	
	
	
	
	data/GCF_000024045.1_ASM2404v1_genomic.fna.gz

The first two columns contain the input genome/contig sequence ID (sometimes called an accession number) and the coordinates of the candidate gene cluster, respectively. Since an input file can have multiple genomic sequences, these two fields together uniquely specify a candidate gene cluster. Each row represents a single annotated feature in the candidate locus. Features from the same candidate are always grouped together in the CSV.

Descriptions of each output field are provided below. Alignment statistic naming conventions are from the BLAST documentation, see BLAST+ appendices [https://www.ncbi.nlm.nih.gov/books/NBK279684/] (specifically “outfmt” in table C1). This glossary [https://www.ncbi.nlm.nih.gov/books/NBK62051/] of common BLAST terms may also be useful in interpreting alignment statistic meaning.

	index

	field name

	data type

	description

	0

	Contig

	string

	ID/accession for the parent contig/genome sequence.

	1

	Loc_coordinates

	string

	Start and end position of the candidate locus (relative to the parent sequence).

	2

	Name

	string

	Feature name/label. This is will be identical to “Description” (index 8) if parse_descriptions is True.

	3

	Coordinates

	string

	Start and end position of this feature, relative to the parent sequence.

	4

	ORFID

	string

	A unique ID given to this feature, primarily for internal use. Only applies to features that are genes.

	5

	Strand

	signed int

	Specifies if the feature was found in the forward (1) or backward (-1) direction. Only applied to features that are genes.

	6

	Accession

	string

	ID/accession for the reference sequence that had the best alignment (by e-value) with this feature’s translated sequence.

	7

	E_val

	float

	The e-value score for the best alignment for this feature.

	8

	Description

	string

	A description of this putative feature, parsed from the defline of best aligned reference sequence.

	9

	Sequence

	string

	The (translated) amino acid sequence for this feature.

	10

	Bitscore

	float

	The bitscore for the best alignment for this feature.

	11

	Rawscore

	int

	The raw score for the best alignment for this feature.

	12

	Aln_len

	int

	The length of the best scoring alignment, in base pairs.

	13

	Pident

	float

	The fraction of identical positions in the best alignment.

	14

	Nident

	int

	The number of identical positions in the best alignment.

	15

	Mismatch

	int

	The number of mismatched positions in the best alignment.

	16

	Positive

	int

	The number of positive-scoring matches in the best alignment.

	17

	Gapopen

	int

	The number of gap openings.

	18

	Gaps

	int

	Total number of gaps in the alignment.

	19

	Ppos

	float

	Percentage of positive scoring matches.

	20

	Qcovhsp

	int

	Query coverage per HSP. That is, the fraction of the query (this feature’s translated amino acid sequence) that was covered in the best alignment.

	21

	Contig_filename

	string

	The input data (genomic sequence(s)) file path.

API Reference

	Gene Finder
	gene_finder.pipeline

	Operon Analyzer
	operon_analyzer.genes

	operon_analyzer.rules

	operon_analyzer.analyze

	operon_analyzer.visualize

	operon_analyzer.overview

	operon_analyzer.reannotation

	operon_analyzer.load

	operon_analyzer.parse

	operon_analyzer.piler_parse

	operon_analyzer.repeat_finder

	operon_analyzer.spacers

Gene Finder

gene_finder.pipeline

	
class gene_finder.pipeline.Pipeline

	Coordinates protein (or nucleic acid) searches to find gene clusters
of interest in genomic/metagenomic data.

	
add_seed_step(db, name, e_val, blast_type, sensitivity=None, parse_descriptions=True, blast_path=None, **kwargs)

	Find genomic regions that contain at least one “seed” sequence.

	Parameters

	
	db (str) – Path to the target (seed) protein database.

	name (str) – A unique name/ID for this step in the pipeline.

	e_val (float) – Expect value to use. Only keep hits with a an equivalent or
better (lower) score.

	blast_type (str) – Specifies which search program to use.
This can be either “PROT” (blastp), “PSI” (psiblast),
“mmseqs” (mmseqs2), or “diamond” (diamond).

	sensitivity (str) – Sets the sensitivity param
for mmseqs and diamond (does nothing if BLAST is the
seach type).

	parse_descriptions (bool, optional) – By default, reference protein
descriptions (from fasta headers) are parsed for gene name labels;
specifically, descriptions are split on whitespace characters
and the second item is used for the label. Make this false to
simply use the whole protein description for the label
(i.e everything after the first whitespace in the header). If
using this option with NCBI BLAST, DO NOT use the -parse_seqids
flag when creating protein databases with makeblastdb.

	blast_path (string, optional) – Path to the blastp/mmseqs/diamond program,
if not using the system default.

	**kwargs – These can be any additional BLAST parameters,
specified as key-value pairs. Note that certain parameters
are not allowed, mainly those that control output formatting.
Currently only supported for blastp/psiblast; if blast_type
is set to mmseqs or diamond, kwargs will be silently ignored.

Note

This should be the first step added to a gene_finder.pipeline.Pipeline object.
Additional gene finding steps can be added in any order.

	
add_seed_with_coordinates_step(db, name, e_val, blast_type, sensitivity=None, parse_descriptions=True, start=None, end=None, contig_id=None, blast_path=None, **kwargs)

	Define a genomic region of interest with coordinates instead of a seed sequence.

An alternative to gene_finder.pipeline.Pipeline.add_seed_step(). Most useful for re-annotating
putative systems of interest, where the region coordinates are already
known.

	Parameters

	
	db (str) – Path to the target database to search against.

	name (str) – A unique name/ID for this step in the pipeline.

	e_val (float) – Expect value to use. Only keep hits with an equivalent or
better (lower) score.

	blast_type (str) – Specifies which search program to use.
This can be either “PROT” (blastp), “PSI” (psiblast),
“mmseqs” (mmseqs2), or “diamond” (diamond).

	sensitivity (str) – Sets the sensitivity param
for mmseqs and diamond (does nothing if BLAST is the
seach type).

	parse_descriptions (bool, optional) – By default, reference protein
descriptions (from fasta headers) are parsed for gene name labels;
specifically, descriptions are split on whitespace characters
and the second item is used for the label. Make this false to
simply use the whole protein description for the label
(i.e everything after the first whitespace in the header). If
using this option with NCBI BLAST, DO NOT use the -parse_seqids
flag when creating protein databases with makeblastdb.

	start (int) – Defines the beginning of the region to search, in base pairs (bp).
If no start position is given the first (zero indexed) position
in the genome/contig is used.

	end (int) – Defines the end of the region to search, in base pairs (bp). If no
end position is given the last position in the contig is used.

	contig_id (string, optional) – An identifier for the contig to search.
If no ID is given, the pipeline will search every contig in the
input file using the coordinates specified. Note that the contig ID
is defined as the substring between the “>” character and the first
” ” character in the contig header.

	blast_path (string, optional) – Path to the blastp/mmseqs/diamond program,
if not using the system default.

	**kwargs – These can be any additional BLAST parameters,
specified as key-value pairs. Note that certain parameters
are not allowed, mainly those that control output formatting.
Currently only supported for blastp/psiblast; if blast_type
is set to mmseqs or diamond, kwargs will be silently ignored.

	
add_filter_step(db, name, e_val, blast_type, min_prot_count=1, sensitivity=None, parse_descriptions=True, blast_path=None, **kwargs)

	Add a step to search candidate regions for target sequences, and filter out
candidates that do not have at least min_prot_count matching sequences.

	Parameters

	
	db (str) – Path to the target protein sequence database.

	name (str) – A unique name/ID for this step in the pipeline.

	e_val (float) – Expect value to use. Only keep hits with a an equivalent or
better (lower) score.

	blast_type (str) – Specifies which search program to use.
This can be either “PROT” (blastp), “PSI” (psiblast),
“mmseqs” (mmseqs2), or “diamond” (diamond).

	min_prot_count (int, optional) – Minimum number of hits
needed to keep each candidate.

	sensitivity (str) – Sets the sensitivity param
for mmseqs and diamond (does nothing if BLAST is the
seach type).

	parse_descriptions (bool, optional) – By default, reference protein
descriptions (from fasta headers) are parsed for gene name labels;
specifically, descriptions are split on whitespace characters
and the second item is used for the label. Make this false to
simply use the whole protein description for the label
(i.e everything after the first whitespace in the header). If
using this option with NCBI blast, DO NOT use the -parse_seqids
flag when creating protein databases with makeblastdb.

	blast_path (string, optional) – Path to the blastp/mmseqs/diamond program,
if not using the system default.

	**kwargs – These can be any additional BLAST parameters,
specified as key-value pairs. Note that certain parameters
are not allowed, mainly those that control output formatting.
Currently only supported for blastp/psiblast; if blast_type
is set to mmseqs or diamond, kwargs will be silently ignored.

	
add_blast_step(db, name, e_val, blast_type, sensitivity=None, parse_descriptions=True, blast_path=None, **kwargs)

	Add a non-filtering search step to the pipeline. That is, search each candidate
for target sequences without applying any filtering logic. This is most useful
for annotating candidates for non-essential or ancillary genes.

	Parameters

	
	db (str) – Path to the target protein sequence database.

	name (str) – A unique name/ID for this step in the pipeline.

	e_val (float) – Expect value to use. Only keep hits with a an equivalent or
better (lower) score.

	blast_type (str) – Specifies which search program to use.
This can be either “PROT” (blastp), “PSI” (psiblast),
“mmseqs” (mmseqs2), or “diamond” (diamond).

	sensitivity (str) – Sets the sensitivity param
for mmseqs and diamond (does nothing if BLAST is the
seach type).

	parse_descriptions (bool, optional) – By default, reference protein
descriptions (from fasta headers) are parsed for gene name labels;
specifically, descriptions are split on whitespace characters
and the second item is used for the label. Make this false to
simply use the whole protein description for the label
(i.e everything after the first whitespace in the header). If
using this option with NCBI BLAST, DO NOT use the -parse_seqids
flag when creating protein databases with makeblastdb.

	blast_path (string, optional) – Path to the blastp/mmseqs/diamond program,
if not using the system default.

	**kwargs – These can be any additional BLAST parameters,
specified as key-value pairs. Note that certain parameters
are not allowed, mainly those that control output formatting.
Currently only supported for blastp/psiblast; if blast_type
is set to mmseqs or diamond, kwargs will be silently ignored.

	
add_crispr_step()

	Add a step to search for CRISPR arrays using PILER-CR.

	
add_blastn_step(db, name, e_val, parse_descriptions=False, blastn_path='blastn', **kwargs)

	Add a step to do nucleotide BLAST.

	Parameters

	
	db (str) – Path to the target protein sequence database.

	name (str) – A unique name/ID for this step in the pipeline.

	e_val (float) – Expect value to use. Only keep hits with a an equivalent or
better (lower) score.

	parse_descriptions (bool, optional) – By default, reference protein
descriptions (from fasta headers) are parsed for gene name labels;
specifically, descriptions are split on whitespace characters
and the second item is used for the label. Make this false to
simply use the whole protein description for the label
(i.e everything after the first whitespace in the header). If
using this option with NCBI BLAST, DO NOT use the -parse_seqids
flag when creating protein databases with makeblastdb.

	blast_path (string, optional) – Path to the blastn program,
if not using the system default.

	**kwargs – These can be any additional BLAST parameters,
specified as key-value pairs. Note that certain parameters
are not allowed, mainly those that control output formatting.
Currently only supported for blastp/psiblast; if blast_type
is set to mmseqs or diamond, kwargs will be silently ignored.

	
run(data, job_id=None, output_directory=None, min_prot_len=60, span=10000, record_all_hits=False, incremental_output=False, starting_contig=None, gzip=False) → dict

	Execute each step in the pipeline, in the order they were added.

	Parameters

	
	data (str) – Path to the input data file. Can be a single-
or multi-sequence file in fasta format.

	job_id (str, optional) – A unique ID to prefix all output
files. If no ID is given, the string “gene_finder”
will be used as the prefix. In any case, results from
the pipeline are written to the file <prefix>_results.csv.

	output_directory (str, optional) – The directory to write
output data files to. If no directory is given then the current
(working) directory is used.

	min_prot_len (int, optional) – Minimum ORF length (aa).
Default is 60.

	span (int, optional) – Length (nt) upsteam and downstream
of each seed hit to keep. Defines the aproximate size
of the genomic neighborhoods that will be used as the
search space after the seed step.

	record_all_hits (bool, optional) – Write data about all genes found
(even discarded ones) to the file <job_id>_hits.json,
grouped by contig. Note that this contains much of the same
information as is in the results CSV file; nevertheless, it
may be useful for analysis or troubleshooting a search.

	incremental_output (bool, optional) – Write results to disk
after each contig is processed. Using this option also creates a
checkpoint file that gives the ID of the contig that is currently
being processed; if the job finishes successfully, this file will
be automatically cleaned up. This feature is especially useful
for long-running jobs.

	starting_contig (bool, optional) – The sequence identifier of
the contig where the run should begin. In other words,
skip over records in the input file until
the specified contig is reached, and then run the pipeline
as normal. This is usually used in conjunction with
incremental_output.

	gzip (bool, optional) – Was this file compressed with gzip?

	Returns

	Candidate systems, grouped by contig id and genomic location.

	Return type

	dict

Operon Analyzer

The following modules comprise the core Operon Analyzer functionality.

operon_analyzer.genes

	
class operon_analyzer.genes.Feature(name: str, coordinates: Tuple[int, int], orfid: str, strand: Optional[int], accession: str, e_val: Optional[float], description: str, sequence: str, bit_score: Optional[int] = None, raw_score: Optional[int] = None, aln_len: Optional[int] = None, pident: Optional[float] = None, nident: Optional[float] = None, mismatch: Optional[float] = None, positive: Optional[float] = None, gapopen: Optional[int] = None, gaps: Optional[int] = None, ppos: Optional[float] = None, qcovhsp: Optional[int] = None)

	Represents a gene or CRISPR repeat array. This is used internally by operon_analyzer.genes.Operon,
but appears in the auto-generated documentation for reference.

	
class operon_analyzer.genes.Operon(contig: str, contig_filename: str, start: int, end: int, features: List[operon_analyzer.genes.Feature])

	Provides access to features that were found in the same genomic region,
which presumably comprise an actual operon. Whether this is true in reality
must be determined by the user, if that is meaningful to them.

	
set_sequence(sequence: Bio.Seq.Seq)

	Stores the nucleotide sequence of the operon.

	
property feature_region_sequence: str

	Returns the nucleotide sequence of the operon, excluding the regions outside of the outermost Features.

	
property all_genes

	Iterates over all genes (i.e. not CRISPR arrays) in the operon regardless of whether it’s been ignored.

	
property all_features

	Iterates over all features in the operon regardless of whether it’s been ignored.

	
property feature_names

	Iterates over the name of each feature in the operon

	
get(feature_name: str, regex=False) → List[operon_analyzer.genes.Feature]

	Returns a list of every Feature with a given name.

	
get_unique(feature_name: str, regex=False) → Optional[operon_analyzer.genes.Feature]

	Returns a Feature or None if there is more than one Feature with the same name

	
as_str() → str

	Writes an Operon back out in the same CSV format that gene_finder produces. The text won’t be
completely identical in the case where floats have trailing decimals, or zero values in
scientific format are recast as a simple float.

operon_analyzer.rules

	
class operon_analyzer.rules.SerializableFunction(name: str, function: Callable, *args, custom_repr: Optional[str] = None)

	A base class for functions that we need to be able to serialize. Do not instantiate this directly.

	
class operon_analyzer.rules.Rule(name: str, function: Callable, *args, custom_repr: Optional[str] = None)

	Defines a requirement that elements of an operon must adhere to.

	
evaluate(operon: operon_analyzer.genes.Operon) → bool

	Determine if an operon adheres to this rule.

	
class operon_analyzer.rules.Result(operon: operon_analyzer.genes.Operon)

	Records which rules an operon passed and handles serialization of the data.
Also makes it easy to run follow-up queries.

	
add_passing(rule: operon_analyzer.rules.Rule)

	Mark this rule as being one that the operon passed.

	
add_failing(rule: operon_analyzer.rules.Rule)

	Mark this rule as being one that the operon failed.

	
property is_passing: bool

	Declares whether the given Operon adhered to all given Rules.

	
class operon_analyzer.rules.Filter(name: str, function: Callable, *args, custom_repr: Optional[str] = None)

	A function that will be run on an Operon that marks Features as being ignorable
for the purposes of evaluating RuleSets.

	
run(operon: operon_analyzer.genes.Operon)

	Mark Features in the Operon as ignored if they don’t pass the filter. This
will prevent them from being taken into account during Rule evaluation and (by
default) during visualization.

	
class operon_analyzer.rules.FilterSet

	Stores functions that take an Operon and mark individual Features as ignored
in case we think they are not actually worth taking into account when evaluating rules.
Features can be ignored for multiple reasons.

	
must_be_within_n_bp_of_anything(distance_bp: int)

	If a feature is very far away from anything it’s probably not part of an operon.

	
must_be_within_n_bp_of_feature(feature_name: str, distance_bp: int, regex: bool = False)

	There may be situations where two features always appear near each other in functional operons.

	
pick_overlapping_features_by_bit_score(minimum_overlap_threshold: float)

	If two features overlap by more than minimum_overlap_threshold, the one with the lower bit score is ignored.

	
custom(filt: operon_analyzer.rules.Filter)

	Add a rule with a user-defined function.

	
evaluate(operon: operon_analyzer.genes.Operon)

	Run the filters on the operon and set Features that fail to meet the requirements to be ignored.

	Parameters

	operon – The operon_analyzer.genes.Operon object whose features will be evaluated.

	
class operon_analyzer.rules.RuleSet

	Creates, stores and evaluates operon_analyzer.rules.Rule s that an operon must adhere to.

	
exclude(feature_name: str, regex: bool = False)

	Forbid the presence of a particular feature.

	
require(feature_name: str, regex: bool = False)

	Require the presence of a particular feature.

	
max_distance(feature1_name: str, feature2_name: str, distance_bp: int, closest_pair_only: bool = False, regex: bool = False)

	The two given features must be no further than distance_bp base pairs
apart. If there is more than one match, all possible pairs must meet the criteria,
unless closest_pair_only is True in which case only the closets pair is considered.

	
at_least_n_bp_from_anything(feature_name: str, distance_bp: int, regex=False)

	Requires that a feature be at least distance_bp base pairs away from any other feature.
This is mostly useful for eliminating overlapping features.

	
at_most_n_bp_from_anything(feature_name: str, distance_bp: int, regex: bool = False)

	A given feature must be within distance_bp base pairs of another feature.
Requires exactly one matching feature to be present.
Returns False if the given feature is the only feature.

	
same_orientation(exceptions: Optional[List[str]] = None)

	All features in the operon must have the same orientation.

	
contains_any_set_of_features(sets: List[List[str]])

	Returns True if the operon contains features with all of the names
in at least one of the lists. Useful for determining if an operon contains
all of the essential genes for a particular system, for example.

	
contains_exactly_one_of(feature1_name: str, feature2_name: str, regex: bool = False)

	An exclusive-or of the presence of two features.
That is, one of the features must be present and the other must not.

	
contains_at_least_n_features(feature_names: List[str], feature_count: int, count_multiple_copies: bool = False)

	The operon must contain at least feature_count features in the list. By default, a
matching feature that appears multiple times in the operon will only be counted once;
to count multiple copies of the same feature, set count_multiple_copies to True.

	
contains_group(feature_names: List[str], max_gap_distance_bp: int, require_same_orientation: bool)

	The operon must contain a contiguous set of features (in any order) separated by no more than max_gap_distance_bp.
Optionally, the user may require that the features must all have the same orientation.

	
maximum_size(feature_name: str, max_bp: int, all_matching_features_must_pass: bool = False, regex: bool = False)

	The operon must contain at least one feature with feature_name with a size (in base pairs) of max_bp or smaller.
If all_matching_features_must_pass is True, every matching Feature must be at least max_bp long.

	
minimum_size(feature_name: str, min_bp: int, all_matching_features_must_pass: bool = False, regex: bool = False)

	The operon must contain at least one feature with feature_name with a size (in base pairs) of min_bp or larger.
If all_matching_features_must_pass is True, every matching Feature must be at least min_bp long.

	
custom(rule: operon_analyzer.rules.Rule)

	Add a rule with a user-defined function.

	
evaluate(operon: operon_analyzer.genes.Operon) → operon_analyzer.rules.Result

	See if an operon adheres to all rules.

	Parameters

	operon – The operon_analyzer.genes.Operon object to evaluate.

operon_analyzer.analyze

	
operon_analyzer.analyze.analyze(input_lines: IO[str], ruleset: operon_analyzer.rules.RuleSet, filterset: Optional[operon_analyzer.rules.FilterSet] = None, output: Optional[IO] = None)

	Takes a handle to the CSV generated by gene_finder.pipeline.Pipeline
and a operon_analyzer.rules.RuleSet object, and produces text that describes which
operons adhered to those rules. If an operon fails any of the rules,
the exact rules will be enumerated.

	
operon_analyzer.analyze.evaluate_rules_and_reserialize(input_lines: IO[str], ruleset: operon_analyzer.rules.RuleSet, filterset: Optional[operon_analyzer.rules.FilterSet] = None, output: Optional[IO] = None)

	Takes a handle to the CSV generated by gene_finder.pipeline.Pipeline
and a operon_analyzer.rules.RuleSet object, and writes passing operons back to stdout.

	
operon_analyzer.analyze.load_analyzed_operons(f: IO[str]) → Iterator[Tuple[str, int, int, str]]

	Loads and parses the data from the output of operon_analyzer.analyze.analyze(). This is
typically used for analyzing or visualizing candidate operons.

	
operon_analyzer.analyze.group_similar_operons(operons: List[operon_analyzer.genes.Operon], load_sequences: bool = True)

	Groups operons together if the nucleotide sequences bounded by their
outermost features (represented by operon_analyzer.genes.Feature objects)
are identical. If load_sequences is True, the nucleotide sequence of each operon will
be loaded from disk as it is encountered.

	Returns

	A representative operon_analyzer.genes.Operon object for each group.

	Return type

	list

	
operon_analyzer.analyze.deduplicate_operons_approximate(operons: Iterator[operon_analyzer.genes.Operon]) → List[operon_analyzer.genes.Operon]

	Deduplicates Operons by examining the names and sequences of their features
(represented by operon_analyzer.genes.Feature objects) and the sizes
of the gaps between them. This is an approximate algorithm: false positives
are possible when the nucleotide sequence varies between the Features
(without changing the total number of base pairs) or if there are silent
mutations in the Feature CDS. However, it is much faster than the exact method.

	Returns

	A representative operon_analyzer.genes.Operon object for each group.

	Return type

	list

	
operon_analyzer.analyze.dedup_supersets(operons: List[operon_analyzer.genes.Operon]) → List[operon_analyzer.genes.Operon]

	If the same inputs are searched with gene_finder.pipeline.Pipeline using an expanded database,
the new results will be either exactly identical to the previous results, or will
be supersets of the old results.

This function takes all operons, and removes ones with identical accession IDs and
contig coordinates, where the smaller operon’s features are all contained in the larger
one.

	Returns

	The non-redundant operon_analyzer.genes.Operon objects.

	Return type

	list

	
operon_analyzer.analyze.cluster_operons_by_feature_order(operons: Iterator[operon_analyzer.genes.Operon])

	Organizes all operons into a dictionary based on the order/identity of their features
(represented by operon_analyzer.genes.Feature objects).
Cases where the overall order is inverted are considered to be the same. The keys of the dictionary
are the dash-delimited feature names, with one of the two orientations (if both exist) arbitrarily chosen.
If there are ignored features, they will not appear in the key.

	Returns

	The resulting operon_analyzer.genes.Operon clusters.

	Return type

	dict

operon_analyzer.visualize

	
operon_analyzer.visualize.plot_operons(operons: List[operon_analyzer.genes.Operon], output_directory: str, plot_ignored: bool = True, color_by_blast_statistic: Optional[str] = None, feature_colors: Optional[dict] = {}, nucl_per_line: Optional[int] = None, show_accession: bool = False, show_description: bool = False)

	Takes operon_analyzer.genes.Operon objects and saves plots of them to disk.

	Parameters

	
	operons (list) – Operons to be plotted.

	output_directory (str) – Path to the directory to save operon plots to.

	plot_ignored (bool, optional) – Toggles plotting of features that were marked as ignorable
by operon_analyzer.rules.FilterSet .

	color_by_blast_statistic (str, optional) – Map an alignment quality statistic using the virdis
color scale. For a list of alignment statistics captured by Opfi, see Opfi output format .

	feature_colors (dict, optional) – If a labeled database was used during candidate identification,
features can be colored accordingly using “label”: “feature-color” pairs. For more information
about labeling sequence databases, see Annotating sequence databases .

	nucl_per_line (int, optional) – Length (in base pairs) to wrap gene diagrams on.

	show_accession (bool, optional) – Show the accession number of the best hit for each plotted feature.

	show_description (bool, optional) – Show the description of the best hit for each plotted feature.

	
operon_analyzer.visualize.plot_operon_pairs(operons: List[operon_analyzer.genes.Operon], other_operons: List[operon_analyzer.genes.Operon], output_directory: str, color_by_blast_statistic: Optional[str] = None, plot_ignored: bool = False, feature_colors: Optional[dict] = {})

	Takes two lists of presumably related Operons, pairs them up such that the pairs overlap the same genomic region,
and plots one on top of the other. This allows side-by-side comparison of two different pipeline runs, so that you can, for example,
run your regular pipeline, then re-BLAST with a more general protein database like nr, and easily see how the annotations differ.

	Parameters

	
	operons (list) – Operons to be plotted.

	other_operons (list) – Related operons to be plotted for comparison.

	output_directory (str) – Path to the directory to save operon plots to.

	plot_ignored (bool, optional) – Toggles plotting of features that were marked as ignorable
by operon_analyzer.rules.FilterSet .

	color_by_blast_statistic (str, optional) – Map an alignment quality statistic using the virdis
color scale. For a list of alignment statistics captured by Opfi, see Opfi output format .

	feature_colors (dict, optional) – If a labeled database was used during candidate identification,
features can be colored accordingly using “label”: “feature-color” pairs. For more information
about labeling sequence databases, see Annotating sequence databases .

	
operon_analyzer.visualize.make_clustered_stacked_operon_plots(operons: Iterable[operon_analyzer.genes.Operon], other_operons: Iterable[operon_analyzer.genes.Operon], image_directory: str, min_count: int = 10, plot_ignored: bool = False, color_by_blast_statistic: Optional[str] = None, feature_colors: Optional[dict] = None)

	Clusters operons and plots them on top of a reannotated version of the same operon. This allows the user to BLAST
some set of data with a curated database, then re-BLAST it against a more general database, and compare the two
directly in a cluster-specific manner.

If a operon_analyzer.rules.FilterSet was used during analysis, that same set should be evaluated on each operon before passing it
into this function.

	Parameters

	
	operons (iterable) – The operons of interest.

	other_operons (iterable) – Reannotated operons.

	image_directory (str) – The directory where all subdirectories will be created. Will be created if it does not exist.

	min_count (int, optional) – Groups must have at least this many systems in order to be plotted. Default is 10.

	plot_ignored (bool, optional) – Toggles plotting of features that were marked as ignorable
by operon_analyzer.rules.FilterSet .

	color_by_blast_statistic (str, optional) – Map an alignment quality statistic using the virdis
color scale. For a list of alignment statistics captured by Opfi, see Opfi output format .

	feature_colors (dict, optional) – If a labeled database was used during candidate identification,
features can be colored accordingly using “label”: “feature-color” pairs. For more information
about labeling sequence databases, see Annotating sequence databases .

	nucl_per_line (int, optional) – Length (in base pairs) to wrap gene diagrams on.

	
operon_analyzer.visualize.make_clustered_operon_plots(analysis_csv: str, operons: Iterable[operon_analyzer.genes.Operon], image_directory: str, min_count: int = 10, diff_against_csv: Optional[str] = None, plot_ignored: bool = False, color_by_blast_statistic: Optional[str] = None, feature_colors: Optional[dict] = None, nucl_per_line: Optional[int] = None)

	Clusters operons by the order of their features and plots them in separate directories,
adding the number of systems to the directory name. Only systems that passed the rules specified as a
operon_analyzer.rules.RuleSet object will be eligible to be plotted.

If a operon_analyzer.rules.FilterSet was used during analysis, that same FilterSet should be evaluated
on each operon before passing it into this function.

	Parameters

	
	analysis_csv (str) – Path to the CSV file created by operon_analyzer.analyze.analyze() .

	operons (iterable) – The operons of interest.

	image_directory (str) – The directory where all subdirectories will be created. Will be created if it does not exist.

	min_count (int, optional) – Groups must have at least this many systems in order to be plotted. Default is 10.

	diff_against_csv (str) – Path to a CSV file created by operon analyzer. Any clusters in this file
will be skipped when clustering operons from analysis_csv. The point of
this is to see only new systems when making slight alterations to rules.

	plot_ignored (bool, optional) – Toggles plotting of features that were marked as ignorable
by operon_analyzer.rules.FilterSet .

	color_by_blast_statistic (str, optional) – Map an alignment quality statistic using the virdis
color scale. For a list of alignment statistics captured by Opfi, see Opfi output format .

	feature_colors (dict, optional) – If a labeled database was used during candidate identification,
features can be colored accordingly using “label”: “feature-color” pairs. For more information
about labeling sequence databases, see Annotating sequence databases .

operon_analyzer.overview

	
operon_analyzer.overview.load_counts(lines: IO[str]) → Tuple[Dict[str, int], Dict[str, int], Dict[int, int]]

	Takes a stream of the output from operon_analyzer.analyze.analyze() and computes some useful statistics. Namely,
the number of times each rule was the only one broken for a contig, the number of times each rule was broken regardless of context,
and the occurrences of the count of broken rules per contig.

operon_analyzer.reannotation

	
operon_analyzer.reannotation.summarize(operons: List[operon_analyzer.genes.Operon], reannotated_operons: List[operon_analyzer.genes.Operon])

	For each protein in each operon, prints out how frequently it was reannotated to a particular protein.
For example, a putative Cas9 may be identified as a transposase when BLASTed with a more expansive database.

operon_analyzer.load

	
operon_analyzer.load.load_sequence(operon: operon_analyzer.genes.Operon) → Optional[Bio.Seq.Seq]

	Loads the DNA sequence for a given operon’s contig.

	
operon_analyzer.load.load_gzipped_operons(filename: str) → Iterator[operon_analyzer.genes.Operon]

	Create a operon_analyzer.genes.Operon representation for each candidate
present in gzipped output from gene_finder.pipeline.Pipeline.

	Parameters

	filename (str) – Path to the compressed pipeline CSV file.

	
operon_analyzer.load.load_operons(handle: IO[str]) → Iterator[operon_analyzer.genes.Operon]

	Create a operon_analyzer.genes.Operon representation for each candidate
present in output from gene_finder.pipeline.Pipeline.

	Parameters

	handle (IO) – Handle for the pipeline CSV file.

operon_analyzer.parse

	
operon_analyzer.parse.assemble_operons(lines: Iterator[Tuple[str, str, str, str, str, str, str, str, str, str]]) → Iterator[operon_analyzer.genes.Operon]

	Takes the output from gene_finder.pipeline.Pipeline and loads all features,
then assembles them into operon_analyzer.genes.Operon objects.

To keep things memory efficient while not allowing redundant operons from being loaded,
we keep track of the hash of each operon, which is just an integer. Even for very
large metagenomic databases this should use less than a gigabyte of memory.

This is a helper function used by the loaders in operon_analyzer.load, but
appears in the auto-generated documentation for reference.

The next set of modules expose simple functions for dealing with CRISPR array sequences. Presumably, these would only be useful to researchers interested in CRISPR-Cas genomic systems.

operon_analyzer.piler_parse

Parses piler-cr output to extract the sequences of every spacer.

	
class operon_analyzer.piler_parse.RepeatSpacer(position, repeat_len, spacer_len, sequence)

	
	
property position

	Alias for field number 0

	
property repeat_len

	Alias for field number 1

	
property sequence

	Alias for field number 3

	
property spacer_len

	Alias for field number 2

	
class operon_analyzer.piler_parse.BrokenSpacer(position, repeat_len, sequence)

	
	
property position

	Alias for field number 0

	
property repeat_len

	Alias for field number 1

	
property sequence

	Alias for field number 2

	
operon_analyzer.piler_parse.parse_pilercr_output(text: str, start: int, end: int)

	Takes the text of pilercr raw output, and a start and end coordinate for an operon’s
neighborhood, and extracts all spacers in that region.

operon_analyzer.repeat_finder

	
class operon_analyzer.repeat_finder.Repeat(upstream_sequence, upstream_start, downstream_sequence, downstream_start)

	
	
property downstream_sequence

	Alias for field number 2

	
property downstream_start

	Alias for field number 3

	
property upstream_sequence

	Alias for field number 0

	
property upstream_start

	Alias for field number 1

	
class operon_analyzer.repeat_finder.GRFResult(start, end, alignment)

	
	
property alignment

	Alias for field number 2

	
property end

	Alias for field number 1

	
property start

	Alias for field number 0

	
operon_analyzer.repeat_finder.find_inverted_repeats(operon: operon_analyzer.genes.Operon, buffer_around_operon: int, min_repeat_size: int)

	Searches an operon and the DNA flanking it for inverted repeats using GenericRepeatFinder.
If found, they will be added to the operon as Feature objects with the name “TIR” and the sequence.
The strand will be set to 1 for the upstream sequence and -1 for the downstream sequence.

	Parameters

	
	operon (Operon) – The operon_analyzer.genes.Operon object.

	buffer_around_operon (int) – The number of base pairs on either side of the operon to search in addition to the operon’s
internal sequence.

	min_repeat_size (int) – The minimum number of base pairs that an inverted repeat must have.

operon_analyzer.spacers

	
class operon_analyzer.spacers.AlignmentResult(match_count, spacer_sequence, contig_sequence, contig_start, contig_end, spacer_alignment, contig_alignment, comp_string, strand, spacer_order, array_length)

	
	
property array_length

	Alias for field number 10

	
property comp_string

	Alias for field number 7

	
property contig_alignment

	Alias for field number 6

	
property contig_end

	Alias for field number 4

	
property contig_sequence

	Alias for field number 2

	
property contig_start

	Alias for field number 3

	
property match_count

	Alias for field number 0

	
property spacer_alignment

	Alias for field number 5

	
property spacer_order

	Alias for field number 9

	
property spacer_sequence

	Alias for field number 1

	
property strand

	Alias for field number 8

	
operon_analyzer.spacers.find_self_targeting_spacers(operons: List[operon_analyzer.genes.Operon], min_matching_fraction: float, num_processes: int = 32)

	For each given Operon, this will determine if CRISPR spacers target a location in the operon’s parent contig.
Matches with more than min_matching_fraction homology will be added to the Operon as a Feature named “CRISPR target”.

Contributing

Thank you for your interest in contributing to Opfi. Contribututions can take many forms, including:

	Reporting a bug

	Discussing the current state of the code

	Submitting a fix

	Proposing new features

Issues

Issues should be used to report problems or bugs with the library, to request new features, or to discuss potential changes before PRs are created.

Good bug reports have:

	A summary of the issue

	Specific steps to reproduce the problem, preferably in the form of code examples

	A description of expected behavior

	A description of actual behavior

Pull Requests

In general, we use Github Flow [https://guides.github.com/introduction/flow/index.html]. This means that all changes happen through Pull Requests:

	Fork the repository to your own Github account

	Clone the project to your machine

	Create a branch locally with a succinct but descriptive name

	Commit changes to the branch

	Push changes to your fork

	Open a PR in our repository and include a description of the changes and a reference to the issue the PR addresses

Coding Style

Contributors should attempt to adhere to the PEP8 [https://www.python.org/dev/peps/pep-0008/] style guide when possible, although this is not currently strictly enforced. At a minimum, new contributions should follow a style that is consistent with the preexisting code base.

Testing

We use the pytest [https://docs.pytest.org/en/6.2.x/] framework for creating unit tests. Please write tests for any new code contributed to this project.

License

By contributing, you agree that your contributions will be licensed under its MIT License.

Code of Conduct

We take our open source community seriously and hold ourselves and other contributors to high standards of communication. By participating and contributing to this project, you agree to uphold our Code of Conduct [https://github.com/wilkelab/Opfi/blob/contributing-guide/CODE-OF-CONDUCT.md].

Attribution

This document was adapted from the General Contributing Guidelines [https://github.com/extendr/rextendr/blob/main/CONTRIBUTING.md] of the rextendr project, and from the contributing template [https://gist.github.com/briandk/3d2e8b3ec8daf5a27a62] developed by briandk [https://gist.github.com/briandk].

 Python Module Index

 g |
 o

 		 	

 		
 g	

 	[image: -]
 	
 gene_finder	

 	
 	
 gene_finder.pipeline	

 		 	

 		
 o	

 	[image: -]
 	
 operon_analyzer	

 	
 	
 operon_analyzer.analyze	

 	
 	
 operon_analyzer.genes	

 	
 	
 operon_analyzer.load	

 	
 	
 operon_analyzer.overview	

 	
 	
 operon_analyzer.parse	

 	
 	
 operon_analyzer.piler_parse	

 	
 	
 operon_analyzer.reannotation	

 	
 	
 operon_analyzer.repeat_finder	

 	
 	
 operon_analyzer.rules	

 	
 	
 operon_analyzer.spacers	

 	
 	
 operon_analyzer.visualize	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | U

A

 	
 	add_blast_step() (gene_finder.pipeline.Pipeline method)

 	add_blastn_step() (gene_finder.pipeline.Pipeline method)

 	add_crispr_step() (gene_finder.pipeline.Pipeline method)

 	add_failing() (operon_analyzer.rules.Result method)

 	add_filter_step() (gene_finder.pipeline.Pipeline method)

 	add_passing() (operon_analyzer.rules.Result method)

 	add_seed_step() (gene_finder.pipeline.Pipeline method)

 	add_seed_with_coordinates_step() (gene_finder.pipeline.Pipeline method)

 	alignment (operon_analyzer.repeat_finder.GRFResult property)

 	
 	AlignmentResult (class in operon_analyzer.spacers)

 	all_features (operon_analyzer.genes.Operon property)

 	all_genes (operon_analyzer.genes.Operon property)

 	analyze() (in module operon_analyzer.analyze)

 	array_length (operon_analyzer.spacers.AlignmentResult property)

 	as_str() (operon_analyzer.genes.Operon method)

 	assemble_operons() (in module operon_analyzer.parse)

 	at_least_n_bp_from_anything() (operon_analyzer.rules.RuleSet method)

 	at_most_n_bp_from_anything() (operon_analyzer.rules.RuleSet method)

B

 	
 	BrokenSpacer (class in operon_analyzer.piler_parse)

C

 	
 	cluster_operons_by_feature_order() (in module operon_analyzer.analyze)

 	comp_string (operon_analyzer.spacers.AlignmentResult property)

 	contains_any_set_of_features() (operon_analyzer.rules.RuleSet method)

 	contains_at_least_n_features() (operon_analyzer.rules.RuleSet method)

 	contains_exactly_one_of() (operon_analyzer.rules.RuleSet method)

 	contains_group() (operon_analyzer.rules.RuleSet method)

 	
 	contig_alignment (operon_analyzer.spacers.AlignmentResult property)

 	contig_end (operon_analyzer.spacers.AlignmentResult property)

 	contig_sequence (operon_analyzer.spacers.AlignmentResult property)

 	contig_start (operon_analyzer.spacers.AlignmentResult property)

 	custom() (operon_analyzer.rules.FilterSet method)

 	(operon_analyzer.rules.RuleSet method)

D

 	
 	dedup_supersets() (in module operon_analyzer.analyze)

 	deduplicate_operons_approximate() (in module operon_analyzer.analyze)

 	
 	downstream_sequence (operon_analyzer.repeat_finder.Repeat property)

 	downstream_start (operon_analyzer.repeat_finder.Repeat property)

E

 	
 	end (operon_analyzer.repeat_finder.GRFResult property)

 	evaluate() (operon_analyzer.rules.FilterSet method)

 	(operon_analyzer.rules.Rule method)

 	(operon_analyzer.rules.RuleSet method)

 	
 	evaluate_rules_and_reserialize() (in module operon_analyzer.analyze)

 	exclude() (operon_analyzer.rules.RuleSet method)

F

 	
 	Feature (class in operon_analyzer.genes)

 	feature_names (operon_analyzer.genes.Operon property)

 	feature_region_sequence (operon_analyzer.genes.Operon property)

 	
 	Filter (class in operon_analyzer.rules)

 	FilterSet (class in operon_analyzer.rules)

 	find_inverted_repeats() (in module operon_analyzer.repeat_finder)

 	find_self_targeting_spacers() (in module operon_analyzer.spacers)

G

 	
 	
 gene_finder.pipeline

 	module

 	get() (operon_analyzer.genes.Operon method)

 	
 	get_unique() (operon_analyzer.genes.Operon method)

 	GRFResult (class in operon_analyzer.repeat_finder)

 	group_similar_operons() (in module operon_analyzer.analyze)

I

 	
 	is_passing (operon_analyzer.rules.Result property)

L

 	
 	load_analyzed_operons() (in module operon_analyzer.analyze)

 	load_counts() (in module operon_analyzer.overview)

 	
 	load_gzipped_operons() (in module operon_analyzer.load)

 	load_operons() (in module operon_analyzer.load)

 	load_sequence() (in module operon_analyzer.load)

M

 	
 	make_clustered_operon_plots() (in module operon_analyzer.visualize)

 	make_clustered_stacked_operon_plots() (in module operon_analyzer.visualize)

 	match_count (operon_analyzer.spacers.AlignmentResult property)

 	max_distance() (operon_analyzer.rules.RuleSet method)

 	maximum_size() (operon_analyzer.rules.RuleSet method)

 	minimum_size() (operon_analyzer.rules.RuleSet method)

 	
 module

 	gene_finder.pipeline

 	operon_analyzer.analyze

 	operon_analyzer.genes

 	operon_analyzer.load

 	operon_analyzer.overview

 	operon_analyzer.parse

 	operon_analyzer.piler_parse

 	operon_analyzer.reannotation

 	operon_analyzer.repeat_finder

 	operon_analyzer.rules

 	operon_analyzer.spacers

 	operon_analyzer.visualize

 	
 	must_be_within_n_bp_of_anything() (operon_analyzer.rules.FilterSet method)

 	must_be_within_n_bp_of_feature() (operon_analyzer.rules.FilterSet method)

O

 	
 	Operon (class in operon_analyzer.genes)

 	
 operon_analyzer.analyze

 	module

 	
 operon_analyzer.genes

 	module

 	
 operon_analyzer.load

 	module

 	
 operon_analyzer.overview

 	module

 	
 operon_analyzer.parse

 	module

 	
 	
 operon_analyzer.piler_parse

 	module

 	
 operon_analyzer.reannotation

 	module

 	
 operon_analyzer.repeat_finder

 	module

 	
 operon_analyzer.rules

 	module

 	
 operon_analyzer.spacers

 	module

 	
 operon_analyzer.visualize

 	module

P

 	
 	parse_pilercr_output() (in module operon_analyzer.piler_parse)

 	pick_overlapping_features_by_bit_score() (operon_analyzer.rules.FilterSet method)

 	Pipeline (class in gene_finder.pipeline)

 	
 	plot_operon_pairs() (in module operon_analyzer.visualize)

 	plot_operons() (in module operon_analyzer.visualize)

 	position (operon_analyzer.piler_parse.BrokenSpacer property)

 	(operon_analyzer.piler_parse.RepeatSpacer property)

R

 	
 	Repeat (class in operon_analyzer.repeat_finder)

 	repeat_len (operon_analyzer.piler_parse.BrokenSpacer property)

 	(operon_analyzer.piler_parse.RepeatSpacer property)

 	RepeatSpacer (class in operon_analyzer.piler_parse)

 	require() (operon_analyzer.rules.RuleSet method)

 	
 	Result (class in operon_analyzer.rules)

 	Rule (class in operon_analyzer.rules)

 	RuleSet (class in operon_analyzer.rules)

 	run() (gene_finder.pipeline.Pipeline method)

 	(operon_analyzer.rules.Filter method)

S

 	
 	same_orientation() (operon_analyzer.rules.RuleSet method)

 	sequence (operon_analyzer.piler_parse.BrokenSpacer property)

 	(operon_analyzer.piler_parse.RepeatSpacer property)

 	SerializableFunction (class in operon_analyzer.rules)

 	set_sequence() (operon_analyzer.genes.Operon method)

 	spacer_alignment (operon_analyzer.spacers.AlignmentResult property)

 	
 	spacer_len (operon_analyzer.piler_parse.RepeatSpacer property)

 	spacer_order (operon_analyzer.spacers.AlignmentResult property)

 	spacer_sequence (operon_analyzer.spacers.AlignmentResult property)

 	start (operon_analyzer.repeat_finder.GRFResult property)

 	strand (operon_analyzer.spacers.AlignmentResult property)

 	summarize() (in module operon_analyzer.reannotation)

U

 	
 	upstream_sequence (operon_analyzer.repeat_finder.Repeat property)

 	
 	upstream_start (operon_analyzer.repeat_finder.Repeat property)

 nav.xhtml

 Table of Contents

 		
 Opfi

 		
 Getting Started

 		
 Installation

 		
 Install with conda (Linux and Mac OS only)

 		
 Install with pip

 		
 Install from source

 		
 Testing the build

 		
 Dependencies

 		
 Example Usage

 		
 Example 1: Finding CRISPR-Cas systems in a cyanobacteria genome

 		
 1. Use the makeblastdb utility to convert a Cas protein database to BLAST format

 		
 2. Use Gene Finder to search for CRISPR-Cas loci

 		
 3. Visualize annotated CRISPR-Cas gene clusters with Operon Analyzer

 		
 Example 2: Filter and classify CRISPR-Cas systems based on genomic composition

 		
 1. Make another temporary directory for output:

 		
 2. Filter Gene Finder output and extract high-confidence CRISPR-Cas systems

 		
 3. Verify results with additional visualizations

 		
 Inputs and Outputs

 		
 Building sequence databases

 		
 The FASTA file format

 		
 Annotating sequence databases

 		
 Converting sequence files to a sequence database

 		
 BLAST advanced options

 		
 Opfi output format

 		
 API Reference

 		
 Gene Finder

 		
 gene_finder.pipeline

 		
 Operon Analyzer

 		
 operon_analyzer.genes

 		
 operon_analyzer.rules

 		
 operon_analyzer.analyze

 		
 operon_analyzer.visualize

 		
 operon_analyzer.overview

 		
 operon_analyzer.reannotation

 		
 operon_analyzer.load

 		
 operon_analyzer.parse

 		
 operon_analyzer.piler_parse

 		
 operon_analyzer.repeat_finder

 		
 operon_analyzer.spacers

 		
 Contributing

 		
 Issues

 		
 Pull Requests

 		
 Coding Style

 		
 Testing

 		
 License

 		
 Code of Conduct

 		
 Attribution

_images/operon_image_3.png

_images/operon_image_4.png

_images/operon_image_1.png

_images/operon_image_2.png
(@s2)
(a1
(CRISPR amray (7))

e

_static/file.png

_images/operon_image_5.png
aT

7500 10,000 12500 15000 1750 0000 250 25000

(CRISPR array (2)

2,000

_static/minus.png

_static/plus.png

